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A Quotation

The essence of risk management lies in maximizing the

areas where we have some control over the outcome while

minimizing the areas where we have absolutely no control

over the outcome and linkage between effect and cause is

hidden from us.

(See Bernstein [9], p. 197)
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Value at Risk (VaR) – Definition

The concept of Value at Risk (VaR) measures the “risk” of a

portfolio. More precisely, it is a statement of the following form:

With probability q the potential loss will not exceed the Value at

Risk figure [→ one sided confidence interval].

Speaking in mathematical terms, this is simply the (1− q)–quantile

of the distribution of the d–day change of value for a given portfolio

P . More specifically,

VaRq,d(P ) = −F −1
P d (1 − q) · PV (P ) , (1)

where P d is the change of value for a given portfolio over d days (the

d–day return), FP d is the distribution function of P d, and PV (P ) is

the present value of the portfolio P .

c© Olaf Menkens School of Mathematical Sciences, DCU



Introduction to Value at Risk 3

Value at Risk (VaR) – Remarks

• The above definition also known absolute Value at Risk. Cor-

respondingly, the relative Value at Risk is defined as

E−VaRq,d(P ) = −
(

E [P ] + F −1
P d (1 − q) · PV (P )

)

. (2)

• The quantile function F−1 is a “generalized inverse” function

F−1
P d (q) = inf

{

x : FP d (x) ≥ q
}

for 0 < q < 1

= inf
{

x : P

(

P d ≤ x
)

≥ q
}

.

• It is often convenient to write the VaR in percent of a potential

loss and not on a monetary base. In order to do so, remove the

term PV (P ) in equation (1) and (2) and replace E [P ] by the

mean of the underlying distribution F .
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VaR – Further Remarks

• VaR has been developed by JP Morgan. More specific, they de-

veloped the so–called RiskMetrics and made it available publicly

in 1994, which has been outsourced to a newly founded com-

pany, also called RiskMetrics (see also http://www.riskmetrics.com).

• The webpage http://www.gloriamundi.org contains a lot of in-

formation about VaR.
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VaR – Pro and Contra

Pro:

• Easy to calculate (at least compared to other risk measures)

and to understand (it is a monetary amount that focuses the

mind).

• It is a common language of communication within the organisa-

tions as well as outside (e.g. regulators, auditors, shareholders).

• It is not really complicated, yet it is “messy” and “time–consum-

ing”.

Contra:

• It is not a coherent measure, more specifically it does not satisfy

the sub–additivity axiom.

• It fails to recognize the concentration of risks.

• Most parametric approaches neglect the heavy tails and the

skewness of the return series.
c© Olaf Menkens School of Mathematical Sciences, DCU
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Calculating VaR

There are several approaches for calculating the Value at Risk–

figure. The most popular are the

• variance–covariance approach (parametric) [→ RiskMetrics],

• historical simulation (nonparametric),

• Monte–Carlo simulation (parametric), and

• extreme value theory (semiparametric).
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Variance–Covariance Approach (VCA)

Assuming that the distribution of the observed returns are normally

distributed, the VaR computation can be simplified considerably.

This approach is a parametric one since it involves estimation of a

parameter – the standard deviation.

With this assumption the d-day VaR to the q–quantile calculates to

VaRq,d(X) = −
√

d · N−1
0,1 (1 − q) · σ · PV (X)

for a single asset where

• N−1
0,1 is the inverse of the standard normal distribution function,

• σ is the – estimated – daily standard deviation of the asset, and

• PV (X) is the present value invested in asset X.
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Standard Normal Distribution and Quantiles
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Inverse Standard Normal Distribution and Quantiles
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Standard Normal Density and the 95% Quantile
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Standard Normal Density and the 98% Quantile
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Standard Normal Density and the 99% Quantile
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VCA – Multiple Assets

The d-day VaR to the q–quantile is for a portfolio with n assets in

this situation given by

VaRq,d(X) = −
√

d · N−1
0,1 (1 − q) ·

√

Y ΣY t ,

where

• N−1
0,1 is the inverse of the standard normal distribution function

(as above),

• Σ is the – estimated – n × n covariance matrix of the assets

which are in the portfolio, and

• Y = PV(X) is a vector of length n and Yi (for i = 1, . . . , n) is

the amount invested in asset i.

Problem: Some positions are non–linear in the underlying risk

factors (such as options or the bond price–yield relationship).
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VCA – Delta Approximation

Assumes that the non–linearity is sufficiently limited so that it is

possible to get an accurate VaR estimation while ignoring the non–

linearity.

The first–order Taylor series approximation of the change in the

value of an option is given by

∆C ≈ δ · ∆X .

Thus, for very short holding periods, the VaR of an option can be

approximated by

VaRq,d(C) = δ · VaRq,d(X)

= −
√

d · N−1
0,1 (1 − q) · σ · PV (X) · δ ,

where C is a call option on the underlying asset X and δ is the delta

of the option.
c© Olaf Menkens School of Mathematical Sciences, DCU
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VCA – Delta–Gamma Approximation

Consider the second–order Taylor series approximation rather than

the first–order one.

∆C ≈ δ · ∆X +
γ

2
(∆X)2 .

Making the assumption that ∆U = (∆X)2 is normal distributed

and independent of ∆X (which is normal distributed), this gives

σ =

√

δ2σ2
X +

(

γ

2

)2
σ2

U =

√

δ2σ2
X +

γ2

4
σ4

X .

With this the Value at Risk calculates to

VaRq,d(C) = −
√

d · N−1
0,1 (1 − q) · σ · PV (X) ·

√

δ2 +
γ2

4
σ2 .

c© Olaf Menkens School of Mathematical Sciences, DCU



Introduction to Value at Risk 16

VCA – Résumé

Pro:

• Easy to calculate and to implement.

Contra:

• First–order approximation are reliable only if the portfolio is

close to linearity.

• Second–order approximation assumes that (∆X)2 is normally

distributed and independent of ∆X while it is indeed χ2–distri-

buted and highly dependent of ∆X.

• There are many other delta–gamma approximations such as the

ones of Wilson (1994, 1996), Feuerverger and Wong (2000),

and Albanese et al. (2001).

• Numerical and simulation methods are improving rapidly (be-

coming both more sophisticated and faster). Thus the need for

Greek–based VaR estimation diminish.
c© Olaf Menkens School of Mathematical Sciences, DCU
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RiskMetrics

RiskMetrics is a well–known program which uses the variance–

covariance approach. A detailed technical description of the method

and the method for estimating the financial parameters can be found

on the website of RiskMetrics.

The main difference is that the variance as well as the covariance

are estimated by using an exponential weighted moving average

(EWMA) of the square of price returns.

σd,i =

√

√

√

√

√

1 − λ

d

i
∑

j=−∞

λi−jR2
j , or

σ2
d,i = λ · σ2

d,i−1 + (1 − λ) ·
R2

i

d
.

Analog for the covariance:

σ2
12d,i

= λ · σ2
12d,i−1

+ (1 − λ) ·
R2

1i
· R2

2i

d
.
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Estimated Density and Fitted Normal Density for DJI
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Left Tail of the Densities for DJI
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Estimated Density and Fitted Normal Density for DJI
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Estimated Density and Fitted Normal Density for eas
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Estimated Density and Fitted Normal Density for eas
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Historical Simulation

Historical simulation is based on order statistics. Given 100 obser-

vations the 99 percent quantile of the d–day returns is simply the

lowest observation.

Let l be the number, which represents the q–th quantile of the order

statistics with n observations. With this, xl is the q–th quantile of

an ordered time series X, which consists of n observations with

q = l
n
.

Estimating the q–quantile via order statistics is a generalisation of

the median (which is the 50 percent quantile). While the median

is in general a robust estimator, the robustness of the q–quantile

depends on the quantile and the number of observations.
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Observed Logarithmic Returns for DJI
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Observed Logarithmic Returns for eas

0 500 1000 1500 2000 2500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Observation

R
et

ur
n

0 500 1000 1500 2000 2500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Ordered Observation

D
ai

ly
 R

et
ur

n

T
hi

s 
pl

ot
 is

 b
as

ed
 o

n 
22

40
 o

bs
er

va
tio

ns
.

c© Olaf Menkens School of Mathematical Sciences, DCU



Introduction to Value at Risk 27

Historical Simulation – Error Estimation I

(i) 1 − α confidence interval

Hartung et al. [12] state that the 1 − α confidence interval for the

q–th quantile of an order statistics, which is based on n points, is

given approximately by [xr;xs]. Here r and s are the next higher

natural numbers of

r∗ = n · q − u1−α/2

√

n · q(1 − q) and

s∗ = n · q + u1−α/2

√

n · q(1 − q) , respectively.

The notation uα has been used for the α–quantile of the N(0,1)–

distribution. This approximation can be used, if q · (1 − q) · n > 9.

Therefore this approximation can be used up to q = 0.01, if n > 910.

Obviously, these confidence intervals are not symmetric, meaning

that the distribution of the error of the quantile estimation is not

symmetric and therefore not normal distributed.
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Historical Simulation – Error Estimation II

However, the error of the quantile estimation is asymptotically nor-

mal distributed (see e.g. Stuard and Ord [13]). Thus for large n

the error is approximately normal distributed and it is possible to

estimate the error as follows.

(ii) Approximating the standard error

Let X be a stochastic process with a differentiable density function

f > 0. Then Stuart and Ord showed, that the variance of xl is

σ2
xl

=
q · (1 − q)

n · (f(xl))
2

,

where f is the density function of X and f must be strict greater

than zero.
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1. Example: The normal distribution

For example, if X ∼ N (0, σ2) the the error calculates to

σx =
q · (1 − q)

n
·

2π · σ2

exp

(

−x2

σ2

)

=
q · (1 − q)

n
·

2π · σ2

exp
(

−y2
) ,

where the substitution σ ·y = x has been used. This shows, that the

error is not independent of the variance of the underlying process,

if this underlying process is normal distributed.
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Some Typical Paths of the Brownian Motion
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2. Example: The Cauchy distribution

Similarly, if X is Cauchy with mean zero, the propagation of the

error can be shown to be

σx =
q · (1 − q)

n
·
π2 · (x2 + γ2)2

γ2

=
q · (1 − q)

n
· π2 · γ2 · (y2 + 1) ,

where the substitution γ · y = x has been used and γ is the scale

parameter.
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Some Typical Paths of the Cauchy Process
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Some Other Typical Paths of the Cauchy Process
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Historical Simulation – Bootstrapping

Bootstrapping is a way to generate more observation than you

have actually available. The procedure is as follows.

1. Number the n observations you have from 1 to n.

2. Draw a number from 1 to n, uniformly distributed.

3. Given that this number is i, take your i–th observation as your

first observation for your new time series.

4. Repeat step 2. and 3. until you reached m, the desired length

of your newly generated time series.

5. Repeat step 2. to 4. to create many more time series.
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Monte Carlo Simulation

• is the generation of time series (such as distribution of returns

or paths of asset prices) by the use of random numbers.

• draws numbers from a chosen distribution (e.g. normal, Stu-

dent–t, or a diffusion) which is supposed to be the future dis-

tribution of the underlying to produce a time series – a future

scenario.

• uses some price methodology to calculate the value of the port-

folio and its VaR.
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Principal Components Analysis

• can be used if the portfolio assets can be grouped into sup–

portfolios which consists only of highly correlated assets.

• states that each portfolio asset (Si)i=1,...,n has a factor repre-

sentation

dSi

Si
= ai,0 +

m
∑

j=1

ai,j
dFj

Fj
+ ǫi ,

with m << n and
(

Fj

)

j=1,...,m
are pairwise independent.

• isolates the factors that are responsible for most of the variabil-

ity.

• Example: three factors capture more than 95 percent of the

variability for interst rates. The factors are the shift, the twist,

and the curvature.
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Stress Testing

Stress testing involves estimating how the portfolio would perform

under some of the most extreme market moves seen in the past.

However, it should be estimated how the portfolio would perform

under some made–up worst case scenario as well.

The aim of stress testing is to understand (or at least to get an

idea of) the risk exposure of the portfolio.
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Stress Testing – Examples

Examples are historical extreme movement such as

• October 19, 1987 when the S&P 500 moved by 22.3 standard

deviations.

• January 8, 1988 when the S&P 500 moved by 6.8 standard

deviations.

• April 10, 1992 when the 10–year UK–bond yields moved by 7.7

standard deviations.

or worst case scenario such as

• a sudden increase/decrease of volatility of ±20 percent.

• a sudden increase (or devaluation) of a currency which is im-

portant for the portfolio.

• a default of a major customer.
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Backtesting

• is a way to estimate the model risk.

• compares the d–day VaR estimation with the actually observed

profit/loss over the next d days. If the actually observed profit/loss

exceeds the VaR estimation too often, the model is not appro-

priate. For example, the 99 percent VaR–quantile estimation

should be exceeded by the actually observed profit/loss “on av-

erage” 2.5 times given 250 observations.

• “clean” and “dirty” backtesting.

• see [10] and [11] for the requirements on backtesting by the

regulators.
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Model Risk

This is the risk that the model chosen is wrong.

In the Value at Risk framework the model risk is analysed by means

of backtesting.

For example, one has the following rule of thumb:

-

lower higher

Model Risk

Nonparametric

Models

“Let the data speak
for itself.”

Parametric

Models or

Model Building

Approach
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Calculating VaR

– the Corresponding Model Risk

-

lower higher

Model Risk

Historical

Simulation

“History rhymes, it
does not repeat.”

(Mark Twain)

Extreme

Value Theory

Variance–

Covariance

Approach

Monte–Carlo

Simulation
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Backtesting – the Three Zone Approach

Zone Number of Increase in

Exceptions Scaling Factor

Green 0 – 4 0

5 0.4

6 0.5

Yellow 7 0.65

8 0.75

9 0.85

Red 10 or more 1

The number of exceptions is to be read out of 250 observa-
tions. The initial scaling factor is 3.
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Approach of the Banking Industry

The banking industry

• uses the VaR approach to measure the market risk in “normal”

times.

• uses stress testing for estimating the impact of “crash” times

to their portfolio.

• takes the liquidity risk into consideration by calculating the 10–

day VaR.

• evaluates the model risk by doing backtesting.
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Basic Requirements of the Regulators

• In order to calculate the required capital for the market risks,

the banks calculate the 99 percent VaR–quantile for the 10–day

returns. The bank must keep at least three times (plus a surplus

depending on model [→ backtesting] and data quality) of this

VaR figure as capital for the market risk exposure.

• At least “clean” or “dirty” backtesting should be done, possibly

both. The results of the backtesting will be evaluated according

to the three zone approach.

• there are many more requirements such as on credit risk, oper-

ational risk, or data quality just to name some . . .

• Further information can be found on the website of the Basel

Committee on Banking Supervision at the Bank for International

Settlements (BIS): http://www.bis.org/bcbs/index.htm .
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. . . and a Citation

The problem with the math is that it adorned with certi-

tude events that were inherently uncertain.

’You take Monica Lewinsky, who walks into Clinton’s office

with a pizza. You have no idea where that’s going to go,’

Conseco’s Max Bublitz, who had declined to invest in Long–

Term, noted.

’Yet if you apply math to it, you come up with a thirty–

eight percent chance she’s going to go down on him. It

looks great, but it’s all a guess.’

(See Lowenstein [8], p. 75)
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