
Comparative Advantage
Learning Software:
Application (Off-line)
Software with
Assessment Capabilities
John Lovett
Department of Economics, Texas Christian University

AAbbssttrraacctt
This paper describes software, written by the author, for
learning comparative advantage and the specialisation gains
from trade. Starting with given absolute costs and available
resources for two nations, the student constructs
production possibilities curves. He or she then picks a term
of trade and feasible levels of exports and imports at which
both nations can gain from trade.

This non-commercial software is application software rather
than a web application. As such, it is easier to develop than
comparable web applications. Traditionally, application
software has lacked the relatively secure assessment (i.e.
grading) capability of web applications. The software
described in this paper, however, produces a verifiable
assessment by producing a code based on the student’s
identifiers and his or her score. This code is then passed to
the instructor who, using other software, decodes it.

IInnttrroodduuccttiioonn
One of the more famous stories in economics is the friendly
exchange between the mathematician Stanislaw Ulam and
Paul Samuelson. Ulam asked Samuelson to ‘Name me one
proposition in all of the social sciences which is both true
and non-trivial.’ Roughly 30 years later, Samuelson, finally
came up with a reply: David Ricardo’s theory of
comparative advantage. Paul Samuelson writes, ‘that it is
not trivial is attested by the thousands of important and
intelligent men who have never been able to grasp the
doctrine for themselves or to believe it after it was
explained to them’ (Samuelson, 1969: 9). Similarly, Paul

Krugman, in his recent essay ‘David Ricardo’s Difficult
Idea’, states: ‘The first thing I need to do is to make clear
how few people really do understand Ricardo’s difficult
idea’ (Krugman, 1996: 1).

These examples illustrate the dilemma an instructor faces
when presenting the concept of comparative advantage.
The concept is central to economics. It explains how all
parties can gain from trade despite different abilities.
Explaining the concept in a way that students can
understand and apply is, however, no easy task.

This paper presents a non-commercial computer
application, called ‘Mon-kee-con’, written by the author. It
is designed to lead students to an understanding of both the
mechanics and intuition of David Ricardo’s ‘difficult idea’.
The software consists of three different comparative
advantage learning modules. The first and shortest
comparative advantage module quizzes students based on a
table of absolute costs for two different nations. The second
and longest module, termed ‘The Full Deal’, begins by
quizzing students on the difference between absolute and
comparative advantage. Then, starting with a set of absolute
costs and given level of resources, the student builds
production possibility curves for two nations. He or she
picks a term of trade and then picks exports and imports
that are feasible (i.e. matching) and allow both nations to
gain from trade. This paper focuses on this, ‘The Full Deal’,
module. The final comparative advantage module starts
with already drawn production possibility curves, and then
asks students a series of questions about gains from trade.

The software is not a ‘web application’, i.e. it is not web
based. Instead, it runs solely on the user’s machine. This is
commonly referred to as ‘application software’. The
software was written in Visual Basic and runs on Windows
operating systems. One advantage of application software is
that it is much faster and easier to create rich application
software than it is to create similar web applications. Web
applications, nonetheless, have traditionally offered some
advantages over application software. One of these is that
web applications offer assessment capabilities whereas
application software does not. Mon-kee-con, however, does
offer assessment capabilities. As such, Mon-kee-con might
serve as a model for other educational application software.

CHEER Volume 19 Page 33

At the end of each session, the software encrypts the
student’s score, module played and the student’s identifiers.
The resulting code is then passed to the instructor for
decryption. Currently none of the passing of data,
decryption or recording of grades is automated. Further,
Mon-kee-con does not have the ability to limit the number
of attempts. In short, one might consider Mon-kee-con an
initial illustration of combining application software with
assessment, not a fully refined model.

The author has been using this comparative advantage
software, and similar Mon-kee-con supply and demand
exercises, in his Principles of Microeconomics course since
2000.

TThhee lleeaarrnniinngg ssooffttwwaarree
Upon starting Mon-kee-con, a student enters his or her
identifying information (name and student ID), choosing
which ‘module’ to play. Mon-kee-con has a total of six
modules: three supply and demand and three comparative
advantage. This paper overviews the main comparative
advantage module called ‘The Full Deal’. Mon-kee-con also
contains a set of supply and demand modules in which
students must shift the appropriate curve and interpret the
results in response to various market changes. These,
however, are beyond the scope of this paper.

‘The Full Deal’ begins with a modified true/false question
overviewing the gains from trade (Figures 1 and 2). Mon-
kee-con displays five options chosen from a possible set of
20. Three correct options appear out of the five choices.
One option (worth the most points) deals with Ricardian
gains from trade. The other two correct options deal with
other gains from trade. As with most questions, the student
is given feedback before he or she can continue.

The student is then given a table with two nation’s absolute
costs, in terms of labour hours, for two goods. The program
pseudo randomly picks one of approximately 1,200 number
combinations. In the vast majority of outcomes, one nation
has an absolute advantage in both goods. Occasional
instances of each nation having an absolute advantage in
both goods are, however, allowed.

The student next picks which nation has an absolute
advantage in each good (Figure 2). He or she then calculates
the opportunity costs in terms of other goods which could
be produced (comparative or relative costs (Figure 3). After
that, the student picks the comparative advantage for each
good (Figure 4).

The student then builds a production possibilities curve for
each nation (Figure 5) based on a set number of available

Page 34 CHEER Volume 19

Figure 1. The opening questions

Figure 2. Choosing absolute advantage

Figure 3. Choosing opportunity cost

Figure 4. Choosing comparative advantage

labour hours. She is next asked to indicate which points are
possible consumption points in autarky (Figure 6).

Next, the student is asked to demonstrate how both nations
can gain from trade. He or she first must pick a viable terms
of trade (Figure 7). Then, in a three-step process, indicates
each nation’s production (assuming complete
specialisation), chooses feasible exports and imports, and
finally indicates the resulting consumption levels (Figure 8).

As the student attempts the module, he or she has to click
through a number of explanations offered by David Ricardo
(Figures 9 and 10).1 After playing a module, the student can
print out the resulting score along with their student
identifiers and a code used to verify the score. The
verification process is discussed in the next section. The
student can attempt a module as many times as he or she
wishes. As a result, students generally play the module
many times and the scores turned in are relatively high.

CHEER Volume 19 Page 35

Figure 5. Building the PPC

Figure 6. Constrained by our PPC w/out trade

Figure 7. Choosing a terms of trade

Figure 8. Choosing exports and imports

Figure 9. One of David’s many explanations

Figure 10. Another of David’s explanations

AAsssseessssmmeenntt ffeeaattuurreess::
lloowweerriinngg eennttrryy bbaarrrriieerrss
In economics education, there has been a definite
movement away from application software to web
applications over the last decade or so.2 Between the mid
1980s and mid 1990s, journal articles surveying economics
learning software concentrated on applications software.3

Many texts were also bundled with application software
(e.g. Byrns and Stone, 1996a and 1996b).

Approximately a decade ago, a shift to web applications
occurred.4 In the late 1990s two major publishers,
Irwin/McGraw-Hill and Harcourt, ‘pulled the plug’ on
application software projects that were, respectively, near a
beta release and already into a beta release.5 With the
exception of many surviving Excel® based problem sets,
web applications are the norm for economics education
software today. Aplia (2006), ThomsonNow (Thomson,
2006), EconX (Beginner’s Mind Inc, 2007), are examples of
current web applications.

More recent evidence of this shift is the conversion of
SimEcon from application software to a web application.
When I began this paper I planned to list WinEcon
(WinEcon Consortium, 2006) and SimEcon (Bresnock and
Garston, 2003, 2005) as the two primary examples of
remaining application software packages in economics.
However, it was recently announced that SimEcon is being
recoded as a web application (Gartson, 2006).

An obvious attraction of web applications is their
assessment capabilities. Web applications can easily
produce verifiable grades for a student’s work. One can
argue, however, that something has been lost in the shift to
web applications. In particular, it is easier and faster to
develop visually rich, highly interactive application
software, than it is for web applications. Less than a year of
learning a ‘rapid application development’ programming
language such as Visual Basic®, VB.Net®, Real Basic® (for
Macintosh® OS’s), or even Java® (presumably using a third
party development package) allows a single person to
create decent applications. Visual Basic, VB.Net, and Real
Basic are particularly fast and easy.

For a given level of time and resources, application
programming leads to richer graphics and more interactivity
than web application programming (Sequin, 2005, Spolsky,
2004). This is evidenced by the fact that many freeware and
low-end commercial application software offers richer
visual environments and interactivity than do high-end
commercial web applications. Further evidence is simply
the fact that we still use application software for most of
our computer needs today. A few years ago there were
predictions that web applications would replace application
software in everything from office software (word
processing, spreadsheets, etc.) to graphics packages. This
has simply not come true.

Because of its lower development costs, application
software may be a means to increasing the supply of
educational software in economies. In 1992, Porter and
Riley (1992: 376–377) listed development costs as a major
impediment to a large supply of learning software in
economics. This is still true today. While there is
competition in the market for web application packages, it

is better described as oligopoly than monopolistic
competition. If application software can be given many of
the desirable features of web applications, namely
assessment capabilities, barriers to entry will be lowered. A
greater variety of usable software could be the result.

The author has added assessment capabilities to Mon-kee-
con using the following method. After a module is
completed, Mon-kee-con encrypts the student’s score, in
combination with identifiers describing the student and the
assessment he or she has just taken, into a code. Currently a
Feistel cipher with a key length of 440 bits, and many
pseudo-random inputs, is used. A more modern encryption
technique could easily be substituted. Mon-kee-con then
generates a printout of this information. The student prints
the information and then hand-carries the page to the
instructor (Figure 11). The code is termed ‘diagnostic code’
in Figure 11.

The instructor or her assistant, then hand enters the score
code into decryption software to confirm the student’s
score (figure 12).

This method is open source. Similar systems (but with
electronic passing of the information rather than
hand-carrying) have been used as third party supplements
to gaming software since at least 1992.6

This system does not limit the number of attempts as can be
done with web applications. It is also more time consuming
for the instructor. Automated passing, decryption and
storing of information, discussed in a later section, would
alleviate this. Nonetheless, it does produce assessments that
are roughly as secure as that offered by web applications.7

Like web applications, unless one has physical control of the
testing site, an instructor cannot verify that the student
turning in the assignment did it without assistance from a
textbook, notes or other students. One can verify, however,
that someone using his or her identifiers used the software
to score the printed results.

Page 36 CHEER Volume 19

Figure 11. Student results printout

TThhee ssooffttwwaarree aass aa lleeaarrnniinngg ttooooll
Daniel suggests three criteria for effective computer based
learning applications. These are: ‘ (1) various stages of
difficulty, (2) flexibility in application, and (3) opportunity
for experimentation’ (1999: 164).8 When designing Mon-
kee-con, a deliberate attempt was made to meet the first
two of these criteria. The three comparative advantage
modules offer three degrees of difficulty. Further, the
modules allow students to restart as many times as they
wish. Students often play until they reach a point at which
they are making many mistakes, then restart the module
and begin again. By doing this, students go through the
earlier stages, by now ‘old hat’, many times. The result is
that each time a student plays a module he or she is
ascending through increasing degrees of difficulty.

In terms of flexibility, the software is designed for use as a
non-graded tutoring/teaching application as well as an
assessment tool (i.e. graded). Opportunity for
experimentation is more limited. The software does,
nonetheless, generate different numeric combinations each
time. When a student uses the software repeatedly, he or
she is practising on different numeric situations.

I have not conducted a formal assessment of the software’s
effectiveness in teaching comparative advantage. Nor have I
formally accessed how much students enjoy it. Nonetheless, I
have found it a useful learning tool for the past six years.
Further, Mon-kee-con is the most commonly cited ‘favorable
aspect of the course’ students listed in their course
evaluations. How much of this is due to the repeatable nature
of the software (and therefore high scores) and how much is
due to the software’s basis as a learning experience, I do not
know. It does encourage me, however, to continue to use the
software in future semesters. Further, one could easily argue
that the repeated attempts the software encourages lead to
significant learning.

PPoossssiibbiilliittiieess ffoorr tthhee ffuuttuurree
Currently, the author is not planning to add additional
learning modules to Mon-kee-con.9 There are plans to
further develop the assessment process. In particular, he

plans to add increased automation in the reporting,
decryption and storage of each student’s results. In the first
phase, after a student plays a round of Mon-kee-con on his
or her computer, he or she could then log onto a page on
the author’s website. The student would then enter his or
her ‘score code’, name and ID. The web page would then,
via encrypted asp coding, decipher the code and record the
results in the Microsoft Access® database on the author’s
website. This would greatly ease the burden of entering
score codes on the instructor. The ease of assessment in
Mon-kee-con would truly be akin to that offered by online
learning software.

Fully automated passing of information, i.e. the software
rather than the student passing the information, is possible.
However, the author has no active plans to modify Mon-kee-
con in this fashion.

NNootteess
1 The screen shots are from a version of Mon-kee-con in which

the author failed to add correctly. The total number of points
possible added to 101, not 100.

2 There is a continuum in the degree of sharing the processing
duties in web applications. In one extreme the only thing the
client machine does is run a browser that interprets html sent
by the server. This is often referred to as ‘thin-client’ because
the client machine is doing relatively little. There are also ‘thick
client’ applications in which the server sends information to be
used in Java applets or Macromedia®’s Flash® running on the
client machine. AJAX and other ‘rich-client’ applications promise
to provide for even ‘thicker’ client application.

3 See, for example, Beckman (1987), Blecha (1991), Boyd (1993),
Dalgaard, Lewis, and Boyer (1984), Khandker and Wehrs
(1990), Walbert (1989), and Yoho (1986).

4 See, for example, Daniel (1999). All see Walstad et al. (1998).

5 McGraw-Hill-Irwin cancelled a project headed by Ralph Byrns
titled ‘Economics Interactive’ in 1997 after spending nearly $1
million on it. The author was a scripter for this project. Samples
from ‘Economics Interactive’ can be found at Ralph Byrns’
website; http://www.unc.edu/depts/econ/byrns_web/
Software/Software.htm. Harcourt developed and offered
‘Archipelago’, a roughly similar CD-Rom based project (see
Talley, 2001). Archipelago, however, was dropped shortly after
its introduction soon after Thomson acquired Harcourt.

6 Players of Prodigy’s Golf Network Tour developed a roughly
similar, and open source, process. While I have not identified
the originator of this method, numerous e-mails have verified
that it was in use by at least 1992.

7 Unlike web applications, Mon-kee-con’s system does not
introduce the possibility of an attack on the server with the
student scores. ‘Plaintext attacks’ are, however, possible. In a
plaintext attack, the code-breaker can view the code resulting
from known inputs (i.e. the students, score, module played, ID,
etc) (Stallings, 1999: 21 – 26).

This, however, is less probable than it may seem. First, it takes
quite a bit of effort, playing the game consistently many times,
to generate a good set of score codes. Second, because of the
random numbers included, there are 784 possible ‘correct’
score codes for every combination of last name, first name,
student ID, game descriptor, and score. Third, Feistel ciphers
switch bases. Each letter of the score code is 5 single bits each
of which map to different parts of the encrypted information.

CHEER Volume 19 Page 37

Figure 12. Verifying the results

The letter ‘A’ in the third position may, for example, contain
partial information about the student’s name, ID, and score,
plus two random elements. Likewise, information about the
student’s name (or any other relevant) information can affect
multiple letters of the score code. See Stallings (1999: 21–26)
for an overview of types of attacks on encrypted messages.

8 Daniel (1999) derived his list of desirable features from
Walbert’s (1989) much longer list.

9 At one time the author planned to greatly expand Mon-kee-con
to include other learning activities. With this goal in mind, a
company (4 Monkeys, LLC) was formed in 2001 with the
author, Ryan Duryea, Edwin Wong, Mike Rangel. Most of the
company’s resources were spent making sure the process is
truly open source. In 2003, 4 Monkeys, LLC was dissolved.

RReeffeerreenncceess
Aplia Inc. (2006), ‘Products’, retrieved 6 October 2006 from Aplia

website: http://www.aplia.com/ .

Beckman, Steven (1987) ‘A Microcomputer Program that Simulates
the Baumol-Tobin Transactions Demand for Money’, Journal of
Economic Education 18 (3): 309–317

Beginners Mind, Inc. (2007) ‘ECONX: Experiments in Economics’,
retrieved 20 November 2007 from: http://www.econx.com/.

Blecha, Betty (1991) ‘Economic Pedagogy and Microcomputer
Software’, Social Science Computer Review, 9 (4): 541–557.

Boyd, David, (1993) ‘The New Microcomputer Development
Technology: Implications for the Economics Instructor and
Software Author’, Journal of Economic Education, 24 (2):
113–125.

Bresnock Anne and Neil Garston (2003, October) ‘SimEcon:
Design, Usage and Assessment’, paper presented at the West
Coast Teaching Economics Conference, Fullerton, California,
USA.

Bresnock, Anne and Neil Garston (2005, June) ‘Designing and
Testing Simulation Software for Economic Education, The Case
of SimEcon’, paper presented at the 4th Global Conference on
Business and Economics, Oxford, England.

Bryns, Ralph and Gerald Stone (1996a), Economics,
Addison-Wesley.

Byrns, Ralph (1996b), Ecostudy [computer software], Retrieved 2
October 2006 from Ralph Byrn’s University of North Carolina at
Chapel Hill website: http://www.unc.edu/depts/econ/
byrns_web/Software/EcoStudy/Installing_EcoStudy.htm

Dalgaard, Bruce, Darrell Lewis, and Carol Boyer (1984) ‘Cost and
Effectiveness Considerations in the Use of Computer-Assisted
Instruction in Economics’, Journal of Economic Education, 15
(4): 309–324.

Daniel, Joseph (1999) ‘Computer-Aided Instruction on the World
Wide Web: The Third Generation’, Journal of Economic
Education, 30 (2): 163–174.

Gartson, Neil (2006), Sample SimEcon Conversion, Retrieved 19
October 2006 from http://instructional1.calstatela.edu/
ngarsto/SimEcon/.

Khandker, A. Wahhab and William Wehrs (1990) ‘Integrated
Microcomputer Graphics and Simulation in Open-Economy
Macroeconomics’, Journal of Economic Education, 21 (2):
167–180.

Krugman, Paul (1996) ‘David Ricardo’s Difficult Idea’, Retrieved 6
October 2006 from the Massachusetts Institute of Technology
website: http://web.mit.edu/krugman/www/ricardo.htm .

Lovett, John (2004) ‘Off-line Comparative Advantage Games
Computer Games’, Papers and Proceedings of the 2003
Economics in the Classroom Conference, 98–108.

Porter, Tod, and Teresa Riley (1992) ‘CAI in Economics: What
Happened to the Revolution?’, Journal of Economic
Education, 23(4): 374–378.

Samuelson, Paul (1969) ‘Presidential Address of the Third Congress
of the International Economics Association’, International
Economic Relations: Proceedings of the Third Congress of the
International Economic Association, edited by Paul
Samuelson, London: MacMillan.

Sequin, Karl (2005), ‘ASP.NET Spiced: AJAX’, Retrieved 7 October
2006 from Microsoft website: http://msdn.microsoft.com/
library/default.asp?url=/library/
en-us/dnaspp/html/ASPNetSpicedAjax.asp.

Spolsky, Joel (2004), ‘How Microsoft Lost the API War’ Retrieved 7
October 2006 from the website:
http://www.joelonsoftware.com/articles/APIWar.html

Stallings, William (1999) Cryptography and Network Security (2nd
ed.), Upper Saddle River, NJ, Prentice Hall.

Talley, Daniel (2001) ‘Microeconomics Online’, Campus
Technology, Retrieved 6 October 2006 from the
http://www.campus-technology.com/article.asp?id=3699.

Thomson (2006), ‘Take a Tour’, Retrieved 6 October 2006 from
the ThomsonNow website: http://www.thomsonedu.com/
thomsonnow/tour/ .

Walbert, Mark (1989) ‘Writing Better Software for Economics
Principles Textbooks’, Journal of Economic Education, 20 (3):
281–289.

Walstad, William, Ann Fender, Jean Fletcher and Wayne Edwards
(1998) ‘Using Technology for Teaching Economics’, in Teaching
Undergraduate Economics: A Handbook for Instructors, W.
Walstad and P. Saunder (eds), 269–283, Boston, Irwin/McGraw-
Hill.

WinEcon Consortium (2006), ‘WinEcon: award winning software’,
Retrieved 6 October 2006 from WinEcon’s website:
http://www.winecon.com/

Yoho, D.L. (1986) ‘Captive Microcomputer Software for Economic
Instruction: A Review’, Social Science Microcomputer Review,
4 (4): 425–437.

CCoonnttaacctt ddeettaaiillss

John Lovett
Instructor
Department of Economics, Texas Christian University, USA

Email: j.lovett@tcu.edu
Web page: http://facukty.tcu.edu/jlovett

Page 38 CHEER Volume 19

