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AAbbssttrraacctt
Dynamic optimisation is widely used in financial
economics, macroeconomics and resource economics. 
This accounts for friction between the undergraduate and
graduate teaching of economics because most
undergraduate programmes still concentrate on static
economic analysis. This paper shows how, with the help of
the Microsoft Excel Solver tool, the principles of dynamic
economics can be taught to students with minimal
knowledge of calculus. As it is assumed that the reader has
no prior knowledge of optimal control theory, some
attention is paid to the main concepts of dynamic
optimisation.

IInnttrroodduuccttiioonn
Dynamic economic analysis emerged more than half a
century ago. Ramsey (1928) analysed the consumption-
saving decision, and Hotelling (1931) showed how an
exhaustible resource is optimally managed. Allen (1938)
included a chapter on the calculus of variations in his
textbook on mathematical economics, which was used by a
generation of graduate students. After World War Two, the
tools of dynamic programming and optimal control theory,
which were developed by applied mathematicians, became
available to economists. Today, dynamic optimisation is
widely used in financial economics, macroeconomics and
resource economics. This accounts for friction between the
undergraduate and graduate teaching of economics because
most undergraduate programmes still concentrate on static
economic analysis. This paper shows how, with the help of
the Microsoft Excel Solver tool, the principles of dynamic
economics can be taught to students with minimal
knowledge of calculus. 

As it is assumed that the reader has no prior knowledge of
optimal control theory, some attention is paid to the main

concepts of dynamic optimisation. First this paper reviews
the history of dynamic optimisation. It then discusses some
problems that are drawn from resource economics before
presenting worksheets for the optimal management of a
nonrenewable resource and the consumption-saving
decision in macroeconomics. The examples and the
analytical solution below highlight the connection between
optimal control theory and the valuation of assets in
financial economics.

The management of natural resources is attracting much
student interest. At the same time, increased sophistication
in the teaching of finance in business schools, a process that
started in the 1970s, has made students receptive to
arguments that stress the consequences of economic
decisions on the future. This is creating an opportunity for
economics lecturers who should find ways to overcome the
artificial barrier between static undergraduate economics
and dynamic graduate economics. Some exposure to
dynamic economic analysis would make research in
financial economics, macroeconomics and resource
economics more accessible to the majority of students who
finish with a Bachelor degree, and it would make it easier
for students to enter graduate programmes in economics.
The huge research effort in dynamic economics that
occurred during the past two decades goes largely
unnoticed in the economic policy debate because
undergraduate curricula fail to expose future policymakers,
whose economics education rarely exceeds the
undergraduate level, to dynamic economic analysis. 

This is not the first paper that attempts to popularise
optimal control theory. Dorfman (1969) was highly
successful in introducing graduate students to optimal
control theory. Nævdale (2003), who solves continuous
time problems with a spreadsheet, is accessible to students
with prior knowledge of optimal control theory. This paper
attempts to popularise dynamic economic analysis to under-
graduate economics. This step has become feasible because
most students know how to use Microsoft Excel, and the
Excel Solver tool provides a convenient way to solve
dynamic problems numerically.

HHiissttoorryy ooff ddyynnaammiicc ooppttiimmiissaattiioonn
The early research on dynamic optimisation applied the
calculus of variations, which had emerged in the 18th and
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19th centuries. Unlike in standard calculus, where the value
of a function depends on the value of the independent
variable, in the calculus of variations the value of a
‘function’ depends on the form or shape of another
function. The calculus of variations is much harder than
standard calculus because it is more difficult to find the
optimal form of an entire function than the optimal value of
a variable. In Ramsey’s consumption-saving model, the
consumer’s lifetime utility depends on the time path of
consumption. The goal of dynamic optimisation is to find
the time path of consumption that maximises the
consumer’s lifetime utility. In Hotelling’s model of
exhaustible resources, dynamic optimisation yields the time
path of resource extraction that maximises the value of a
resource project, for example a mine. Usually, in economics
and finance, an optimal path is sought that represents the
decision variable as a function of time. But the calculus of
variations is also used in engineering and physics, where
the optimal path may have a physical dimension.1

In the 1950s, Richard Bellman became interested in
numerical solutions to dynamic optimisation problems. In
his autobiography he writes: 

‘as of 1954 or so I had stumbled into some important
types of problems and had been pushed, willy-nilly, into
answering some significant kinds of questions. I could
handle deterministic control processes to some extent
and stochastic decision processes in economics and
operations research as well. Where next? At this point, I
began to think in a logical fashion, using a systematic
methodological approach.’ (Bellman, 1984: 182) 

Richard Bellman and Stuart Dreyfus also convey:

‘In 1955, we began a systematic study of the
computational feasibility of dynamic programming. We
collected a number of optimisation problems from many
different fields and applied our methods in many
different ways.’ (Bellman and Dreyfus, 1962: viii)

This work led to the publication of Dynamic Programming
by Bellman in 1957 and Applied Dynamic Programming
(co-authored with S.E. Dreyfus) in 1962.2 In the same year,
L. S. Pontryagin and his students – V. G. Boltyanskii, R. V.
Gamkrelidze, and E. F. Mishchenko – published their
pioneering research on optimal control theory in The
Mathematical Theory of Optimal Processes (first published
in Russian in 1961).  

In the calculus of variations the decisionmaker has direct
control of the so-called state variable. For example, the
operator of a mine decides on the amount of ore to be
extracted. The mine’s ore reserve is the state variable and
the rate of ore extraction is the control or decision variable.
There exists a one-to-one relationship between the decision
variable and the state variable because the rate of extraction
determines the reduction in the ore reserve at each point in
time. The direct control of the state variable through the
decisionmaker is specific to the calculus of variations.
Optimal control theory considers a more general situation
in which the change in the state variable depends both on
the decision variable and the level of the state variable. This
links decisions across time because the current decision
affects the level of the state variable in the future. The state

variable provides a channel through which the current
decision has an impact on the future growth of the state
variable. Bellman quickly learnt that it is difficult, and
indeed often impossible, to solve optimal control problems
with the calculus of variations. In his autobiography, he
reminisces: 

‘I started work on optimal control theory. I had seen
problems in economics and operations research … The
tool we used was the calculus of variations. What we
found was that very simple problems required great
ingenuity. A small change in the problem caused a great
change in the solution. … Clearly, something was wrong.
There was an obvious lack of balance. Reluctantly, I was
forced to the conclusion that the calculus of variations
was not an effective tool for obtaining a solution.’
(Bellman, 1984: 175)

For this reason, Bellman developed dynamic programming,
which solves optimal control problems numerically. Still, it
took him some time to realise that dynamic programming is
a numerical method to solve optimal control problems. 

‘I should have seen the application of dynamic
programming to control theory several years before. I
should have, but I didn’t. … Scientific developments can
always be made logical and rational with sufficient
hindsight. It is amazing, however, how clouded the
crystal ball looks beforehand.’ (Bellman, 1984: 182)

EExxaammpplleess iinn rreessoouurrccee eeccoonnoommiiccss
The new concepts that have been introduced so far will
now be repeated with the help of two examples, the
optimal management of a mine and of a fishery. In dynamic
optimisation the value of a ‘function’ depends on the entire
form of another function. A ‘function’ whose value depends
on the form of another function is called a functional.
Functionals play an important role in financial economics
because an asset embodies a stream of expected cash flows,
which can be represented as a function of time. 

A mine is an asset whose value at time 0 equals the present
value of the stream of cash flows that will be earned during
the mine’s life, say until time T:

(1)

The cash flow function, C(u(t)), indicates that extracting
the amount of ore, u(t), produces the cash flow, C(u(t)), at
time t. It is assumed that ore extraction is subject to
diminishing returns at each point in time. Cash flows that
occur in the future are discounted by the discount factor
e–rt where r is the discount rate applicable to this type of
investment. The value of the mine, , which is its
price in an efficient equity market, depends on the initial
ore reserve, x0, and on the time path of ore extraction, ,
in the interval from 0 to T. The time path of ore extraction
matters because future cash flows are discounted and ore
extraction is subject to diminishing returns at each point in
time. The discount factor provides an incentive to mine the
ore quickly, but this effect is counterbalanced by the need
to spread the ore production over time because the cash
flow function is subject to diminishing returns. The value of
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the mine, , is a functional because it depends on the
form of a function, the time path of ore extraction during
the mine’s life. 

The ore reserve, x(t), is the state variable and the rate of
extraction, u(t), is the decision variable. At each point in
time, the rate of extraction determines the reduction in the
ore reserve:

. (2)

The decisionmaker directly controls the variation in the
state variable, dx/dt, by setting the control variable, u(t).
The standard behavioural hypothesis is that the owner of
the mine chooses the optimal time path of ore extraction,

, that maximises the value of the mine, . A
dynamic optimisation problem in which the decisionmaker
has direct control of the state variable can be solved with
the calculus of variations. 

The second example concerns the optimal management of
a fishery, which has become an important policy issue
because of the overexploitation of world fish stocks.
Suppose it is possible, through an international treaty, to
assign a maritime fish stock to a single decisionmaker who
wishes to maximise the value of the resource. The state
variable is the stock of fish, x(t), and the decision variable is
the harvest, u(t). The cost of fishing, C, depends positively
on the harvest and negatively on the stock of fish: 
C = C (u(t),x(t)). The stock of fish is an argument in the
cost function because it is easier to catch fish when fish are
abundant. At each point in time, the cash flow equals
revenue minus cost, pu(t) – C(u(t), x(t)), where it is
assumed that the price of fish, p, is constant. The value of
the fishery, its asset price, equals the present value of the
stream of cash flows earned from fishing: 

. (3)

The value of the fishery, , is a functional whose
value depends on the initial stock of fish, X0, and the time
path of fishing, . The absence of a terminal date T makes
it possible that the fishery is operated on a sustainable basis,
but it does not guarantee it.3 This problem generalises the
preceding problem in two ways. First, the state variable, the
stock of fish, influences the cash flow through the cost of
fishing. Second, the state variable is an argument in the
dynamic constraint because a fishery is a renewable
resource whose biological renewal depends on the stock of
fish, x(t). The biological renewal function, f(x(t)), reaches a
maximum at some critical stock size where the conditions
are most favorable for the survival of the fish. At each point
in time, the growth rate of the fish stock is the difference
between the biological renewal minus the catch: 

. (4)

Differential equation (4) is a dynamic constraint that
determines the evolution of the stock of fish over time. It
describes the management techniques available for fish
stocks, including genetic improvements that raise the
biological renewal. Wealth maximisation implies that the
decisionmaker chooses the time path of fishing, , that

maximises the functional, , subject to the dynamic
constraint (4). The inclusion of the stock of fish in the
constraint introduces an intertemporal externality in the
decision process. The current catch affects the future catch
because the growth rate of the stock of fish depends on the
time path of the stock of fish. Equation (4) fulfills the same
purpose as equation (2), but only equation (4) is a true
technological constraint that restricts the time path of the
state variable. An optimisation problem with a meaningful
dynamic constraint gives rise to an optimal control
problem.

NNuummeerriiccaall ssoolluuttiioonn
Microsoft Excel provides a convenient teaching platform for
an applied introduction to optimal control theory because
most students know how to use a spreadsheet. Dynamic
optimisation problems can be solved with the Excel Solver
tool, which is a free add-in to Excel.4 Solver implements the
Generalised Reduced Gradient Nonlinear Optimisation
Method, developed by Leon Lasdon and Allan Waren in the
1990s. More information on the algorithm can be found on
the internet.5 This section presents two exercises: the first
concerns the management of a mine and the second
considers the consumption-saving decision in the Ramsey
model. Conrad (1999) uses the Microsoft Excel Solver tool
to solve many numerical allocation problems in resource
economics.

Mining 

Since analytical work is easier with continuous time than
with discrete time, continuous time has been used so far
and we will return to continuous time for the analytical
solution in the next section. But for practical work it is
necessary to switch to discrete time because it is not
possible to record economic data continuously. With annual
data, the time path of ore extraction is the mine’s output in
each year: . The value of the mine is the
sum of discounted cash flows earned during its life, from
year 0 to T.

(5)

The present value (5) is the discrete time equivalent of
equation (1). C(ut) indicates the cash flow in year t, and
β =1/(1+r) is the discount factor, where r is the interest rate
appropriate for a resource project. A numerical solution to
the dynamic optimisation problem requires that the annual
cash flow function is specified. The cash flow can be
modelled as a power function, C(ut)=uα

t , which has
diminishing returns if 0<α<1. Substituting into equation (5)
yields: 

(6)

The operator of the mine chooses the time path of ore
extraction, that maximises the present
value functional, , subject to:
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Like equation (2), equation (7) is not a true constraint that
limits the rate of change of the ore reserve through some
technological relationship. Equation (7) says that the
decisionmaker controls the reduction in the ore reserve
from one year to the next. Finally, a numerical solution to a
dynamic optimisation problem requires two endpoint
conditions. Suppose the initial ore reserve is 1000 units and
the mine’s owner wants to operate the mine for 10 years.
Then, the initial condition is x0=1000 and the final condition
is xT=x10≥0. Naturally, it is optimal to recover all ore
because the value functional (6) assigns no value to ore that
stays underground after time T. Therefore, the final
condition holds as an equality, but it is sufficient to impose
an inequality. In the case of a mine, it is also natural to
assume that the rate of ore extraction is non-negative at all
times. Then, all elements of the so-called control set are non-
negative, or . 

Worksheet 1.1 sets up the dynamic optimisation problem of
the mine. The parameter α, which determines the curvature
of the annual cash flow function, is put at 0.8, and the
interest rate r is 8 per cent. The formula in cell B3 converts
the interest rate into the discount factor β = 1/(1+r).
Column C implements equation (7), which captures the
time path of the ore reserve. At the beginning of each year,
the ore reserve equals the reserve at the beginning of the
preceding year minus the ore extracted during the
preceding year, xt+1 = xt–ut. The initial ore reserve, which is
shown in cell C6, is assumed to be 1000 units. Solver uses an
iterative algorithm that requires an initial guess of the
optimal time path of ore extraction. We first assume that ore
is extracted evenly in each year, hence the value of 100 is
included in cells B6 to B15. In the last column, DCF(t) stands
for the discounted cash flow earned from ore extraction in
year t, βtuα

t. Finally, cell D18 contains the value of the mine,
, which is the sum of discounted cash flows earned

during its operation. 

Worksheet 1.2 shows the values that correspond to the
formulas in Worksheet 1.1. Use the key combination
[Ctrl][~] to switch back and forth between formulas and
values. Here are some tips that will save you time. Write the
number 0 into cell A6 and the number 1 into cell A7. Then,
highlight both cells, click with the mouse on the lower-right
corner of cell A7, and drag the mouse downward. This
yields the column with the years. Also write the number
100 into cell B6, click with the mouse on the lower-right
corner of the cell, and drag it downward to produce the
initial time path of ore extraction. This even works with the

formulas in columns C and D. For example, write the
formula into cell D6, click on the lower-right corner of the
cell, and drag it downward. As you can see, cell references
that do not include $ signs are updated, whereas cell
references with $ signs are not. This is important because
$B$3 and $B$1 are fixed parameters, whereas the other cell
references depend on the year t.

The value of the mine, , depends on the initial ore
reserve, x0, and on the time path of ore extraction, .
Worksheet 1.2 shows that the value of the mine is 288.5 if
the initial ore reserve is 1000 units and 100 units are
extracted in each year. But an even time path is not optimal
when future cash flows are discounted. Applying Solver
yields the optimal time path of ore extraction that
maximises the value of the mine. To initiate Solver, click
with the mouse on the target cell D18, which displays the
value of the mine, and start Solver from the Tools menu.
Dialogue box 1 will appear.

The top of the dialogue box shows the target cell, whose
value Solver maximises. Write the range of cells with the
time path of ore extraction, $B$6:$B$15, into the dialogue
box. Solver searches for the optimal values of cells B6 to
B15 that maximise the value in the target cell D18,
conditional on the constraints. The first constraint,
$B$6:$B$15>=0, requires that ore extraction must be non-
negative in each year. Use the Add button to write this
constraint into the dialogue box; it cannot be done directly.
The second constraint, $C$16>=0, limits the maximum
amount of ore that can be recovered during the mine’s life
to the initial ore reserve. When you have completed the
dialogue box, click on the Solve button in the top-right
corner.
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Worksheet 2 shows the optimal time path of ore extraction.
It is optimal to extract 326.4 units of ore in year 0, 222.1
units in year 1, 151.2 units in year 2, and so on. The value of
the mine increases from 288.5 to 314.2 if the optimal time
path of ore extraction is adopted. The optimal time path of
ore extraction is downward sloping because the discount
factor provides an incentive to get the ore out of the ground
quickly. However, the diminishing returns of the annual
cash flow function prevent that even more ore is mined in
the early years. It should be noted that the optimal time
path fulfills all constraints. In each year, ore extraction is
non-negative and ore extraction stops when the mine is
exhausted. The entire ore reserve is extracted because no
value is assigned to ore that stays underground at the end of
the planning horizon.

A sensitivity analysis shows the influence of the interest rate
on the optimal solution. Return to Worksheet 1, change the

interest rate to 10 per cent in cell B2, highlight the target
cell D18, and re-run Solver. Worksheet 3 shows the optimal
time path of ore extraction with the higher interest rate.
The rise in the interest rate increases the incentive to mine
the ore quickly. Ore extraction increases to 382.3 units in
year 0 and 237.4 units in year 1, afterwards less ore is
extracted with the new interest rate of 10 per cent. The
optimal time path of ore extraction is steeper because
future cash flows are discounted more strongly. The value of
the mine increases from 269.1 with even ore extraction to
304.5 with optimal extraction. The high discount rate
explains why the value of the mine is now only 304.5, even
with optimal behaviour. Still, Worksheet 3 shows the best
time path of ore extraction under the changed
circumstances.

Two forces have an impact on the optimal timing of ore
extraction. The discount factor makes it worthwhile to
mine the ore quickly, but this effect is counterbalanced by
the diminishing returns of the annual cash flow function.
Worksheet 4 shows the optimal time path of ore extraction
when the curvature of the cash flow function is less
pronounced, implying a lower degree of diminishing
returns. To this effect, the parameter α is changed from 0.8
to 0.9 in the initial Worksheet 1, and Solver is re-run. The
optimal time path of ore extraction is now very steep: 537.0
units in year 0, followed by 248.8 units in year 1, and 115.2
units in year 2. Ninety per cent of all ore is mined during
the first three years. The value of the mine increases from
457.3 with even ore extraction to 533.3 with optimal
extraction. The increase in the value of the mine is larger
than before because the low degree of diminishing returns
of the annual cash flow function allows for a large deviation
of the optimal time path of ore extraction from the even
time path.

Ramsey Model

The second exercise concerns the Ramsey model, which
plays a central role in advanced macroeconomics courses
and macroeconomic research. The Ramsey model adds
optimisation behaviour to the Solow–Swan model of
economic growth by modelling the consumption-saving
decision of a forward-looking consumer. Blanchard and
Fischer (1989: ch. 2) present the model with continuous
time, and Walsh (2003: ch. 2) uses discrete time. This
exercise is intended for students who are gaining a first
exposure to dynamic macroeconomics. Readers who are
not interested in macroeconomics can move directly to the
analytic solution of optimal control problems in the next
section, without loss of continuity of the argument. 

The utility function of the representative consumer is:

. (8)

In year t, the consumer enjoys utility, u(ct), where ct is
annual consumption. β = 1/(1+θ) is a subjective discount
factor that uses the consumer’s personal rate of time
preference, θ . The expression (8) measures the present
value of lifetime utility of a consumer who expects to live
for T years, applying the subjective discount factor, β. A
popular form of the annual utility function is the constant
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relative risk aversion utility function (CRRA), where
u(ct) = (ct

1–γ–1)/(1–γ). Substituting into equation (8) yields: 

. (9)

The parameter γ determines the curvature of the annual
utility function, u(ct). A high γ indicates strongly
diminishing marginal utility of annual consumption. Then,
the intertemporal elasticity of substitution is low because
shifting consumption from one year to the next reduces
utility strongly in the first year, while utility rises only by a
small amount in the second. The present value of the
consumer’s lifetime utility is a functional, , whose
value depends on initial holdings of physical capital, k0, and
on the time path of consumption, , chosen by the
consumer. Physical capital is the only form of wealth
because net financial asset holdings are zero in a closed
economy.

Assume that individuals, who are both consumers and
workers, produce output in accordance with a
Cobb–Douglas technology. Since the Cobb–Douglas
production function has constant returns to scale, it can be
written in per capita terms: 

. (10)

Output per worker in year t,yt, depends on the amount of
physical capital per worker in the preceding year, kt–1. The
parameters A and α determine the available technology.
Equation (11), which is borrowed from the Solow–Swan
model of economic growth, describes the mechanics of
capital accumulation:6

(11)

The bracketed component represents saving, which is
output, Akα

t–1, minus consumption, ct. δ is the depreciation
rate of physical capital and n is the rate of population
growth, both measured in per cent per year. Then,
((1–δ)/(1+n))kt–1 is the amount of capital per worker
carried over from period t–1 into period t, taking account
of depreciation and population growth. The difference
equation (11) is a technological constraint that limits the
availability of capital goods in each year. The amount of
capital per worker increases if saving more than makes up
for the reduction in capital per worker due to depreciation
and population growth. The behavioural hypothesis is that
the representative consumer chooses the time path of
consumption that maximises lifetime utility (9), subject to
the dynamic constraint (11). At each point in time, the
consumer faces an intertemporal trade-off because
immediate consumption reduces future consumption by
lowering capital accumulation and output growth. 

In the steady state, saving must equal ((n+δ)/(1+n))k* to
compensate for the negative effect of depreciation, δ, and
population growth, n, on the amount of capital per worker.
To see this, set kt = kt–1 =k* and solve for saving in
equation (11). Walsh (2003: ch. 2) also shows that the
steady state amount of capital per worker is:

. (12)

The steady state output per worker, y*, can be calculated by
substituting k* into the production function (10), and the
steady state consumption per worker, c*, is output minus
saving:

. (13)

The curvature parameter of the annual utility function, γ,
does not affect the steady state, but all other parameters
matter. 

The optimal response of the representative consumer to
economic shocks determines the aggregate response of the
economy. Starting from an initial steady state, the economy
passes through a transition period until it reaches the new
steady state. Strictly, it takes an infinite number of years
until the economy reaches the new steady state, which is
too much for the Solver algorithm to handle. However,
using standard parameter values, the economy is very close
to the new steady state within 20 years. Therefore, we
calculate the optimal time paths of capital, output and
consumption for a representative consumer with a time
horizon of 20 years.7 The next worksheet sets up the
optimal control problem of the representative consumer.
Worksheet 5.1 includes the formulas and Worksheet 5.2
shows the corresponding values. Remember that you can
switch back and forth between formulas and values with
the key combination [Ctrl][~].

Rows 2 to 8 include realistic parameter values, which are
drawn from the real business cycle literature. The rate of
time preference, θ , is 4 per cent per year; the curvature
parameter of the annual utility function, γ is 1.5; the
technological parameters of the Cobb–Douglas production
function are A = 1 and α = 0.3; the depreciation rate, δ , is 5
per cent per year; and the rate of population growth, n, is 1
per cent per year. Column B includes the parameter values
before an economic shock, and column C is used to input
new values that reflect economic shocks. The first shock is
an increase in the rate of time preference from 4 per cent to
5 per cent per year. This reduces the subjective discount
factor, β , from 0.96 in cell B3 to 0.95 in cell C3. Cells B9
and C9 compute the steady state amount of capital per
worker before and after the shock, using equation (12).8
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The increase in time preference reduces the steady state
amount of capital from 4.85 units to 4.23 units. The capital
stock falls because the representative consumer discounts
utility from future consumption more strongly, therefore the
consumer is less inclined to defer consumption and save.

Below row 11, the worksheet shows how the economy
passes through the transition period from the initial steady
state to the new one in response to the increase in time
preference. Referencing cell B9, cell C12 includes the
capital per worker in the initial steady state, which is 4.85
units. This is the initial condition of the optimal control
problem. The formula in cell C13 is the constraint (11),
which captures the mechanics of capital accumulation. Cell
D13 includes the production function (10), and cell E13 is
the discounted value of annual utility, using the CRRA utility
function. The present value of lifetime utility in cell E34 is a
functional, V(k0 ,c ), whose value depends on the initial
capital stock, k0, in cell B9 and on the time path of
consumption, 

→
c , in cells B13 to B32.

It is natural to initiate the Solver tool with the original
steady state consumption, but some arbitrary time path of
consumption will also work, provided it is not too far away
from the optimal solution after the shock. Using equations
(12) and (13), consumption is 1.3176 units in the original
steady state. Write this into cell B13 and copy it downward.
Since the rate of time preference has risen to 5 per cent, the
original steady state consumption is no longer optimal. The
representative consumer chooses the best time path of
consumption, which maximises the present value of
lifetime utility in cell E34. Designate cell E34 as the target
cell and start Solver from the Tools menu. Write the range
of cells with the time path of consumption, $B$13:$B$32,
into dialogue box 2. The first constraint, $B$13:$B$32>=0,
requires that consumption is non-negative in each year. The
second constraint, $C$32>=$C$9, guarantees that the
optimal time path of capital per worker approaches the

new steady state value after the shock. Without this
constraint, the consumer would consume the entire capital
stock because goods do not yield utility after time T.

After an increase in the rate of time preference, the
economy passes through a transition period until it reaches
the new steady state at a lower capital stock. Worksheet 6
shows the time paths of capital, output and consumption
per worker. The adjustment paths are first steep and then
flat, with most of the adjustment occurring within 15 years.
It is worthwhile for the consumer to modify consumption
after the change in the rate of time preference. Optimal
behaviour increases lifetime utility from 3.37 units with no
change in consumption (Worksheet 5.2) to 3.55 units with
optimal consumption (Worksheet 6).

Similar simulations can be conducted for changes in the
other structural parameters of the economy: the
technological coefficients of the Cobb–Douglas production
function, A and α, the depreciation rate, δ, and the rate of
population growth, n. Changes to these parameters
produce a new steady state, which the economy
approaches after some transition period. A change in the
curvature parameter of the annual utility function, γ, does
not yield a new steady state, but it affects the time path of
the economy towards the steady state if one of the other
parameters changes. Technological shocks, which play a
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major role in modern business cycle research, can be
modelled either by an autonomous shift in the parameter A
or by adding a constant z to the production function,
yt = Akα

t–1+z. Unlike a shift in A, the inclusion of z in the
production function does not affect the marginal products
of capital and labour. The coefficient α, which measures the
income share of capital in a competitive economy, is also a
technological parameter, but it is rarely used to model
technological change because it is generally perceived as
being stable.

The optimal response of the representative consumer to a
technological shock depends on how long it is expected to
last. First, suppose that the production function shifts
upward for just one year. Return to Worksheet 5 and change
the rate of time preference to 4 per cent in cell C2 to keep
it constant. Then, add 0.2 to the production function in cell
D13: =$C$5*C12^$C$6+0.2. This amounts to a parallel
upward shift of the production function by 0.2 units in year
1. Before the technological shock, steady state consumption
was 1.3176, which serves as the initial guess for the time
path of consumption. After the technological shock, the
initial steady state consumption is no longer optimal. Use
Solver to maximise the lifetime utility of the consumer in
cell E34. The dialogue box should look like the previous
dialogue box 2.

Worksheet 7 shows the response of the economy to the
temporary upward shift in the production function. In year
1, output increases from 1.6054 commodity units
(Worksheet 5.2) to 1.8054 units (Worksheet 7). The extra
0.2 units of output are mostly saved and added to the
capital stock. The amount of capital per worker advances
by 0.175 units, and consumption grows by 0.025 units.
Thus, the marginal propensity to consume out of the
temporary increase in output is only 12.5 per cent. The
new physical capital adds to output in the following years,
allowing the consumer to maintain a slightly higher
consumption path. Only a small amount of the extra output
is consumed in year 1 because the curvature of the annual
utility function implies that an increase in consumption
reduces marginal utility. Therefore, the consumer
smoothens the time path of consumption. By year 20, the
additional capital has been used up, and the capital has
fallen back to the steady state level, which has not changed.

To model a permanent parallel upward shift in the
production function, copy cell D13 downward to cell D32.
This adds the shift parameter, z = 0.2, to output in each
year. Then, reset the time path of consumption to the
steady state level of 1.3176, and use Solver to maximise the
value of lifetime utility in cell E34. Worksheet 8 shows the
response of the economy to the permanent upward shift in
the production function. The marginal propensity to
consume out of a permanent increase in income equals 1
because both output and consumption increase by 0.2 in
year 1. Indeed, output and consumption increase by 0.2 in
every year. Since output increases permanently, there is no
need to save and the capital stock remains constant. Thus,
the marginal propensity to consume out of permanent
income is 1, whereas the marginal propensity to consume
out of temporary income is small. This finding accords with
Milton Friedman’s permanent income hypothesis and
Franco Modigliani’s life-cycle hypothesis of consumption.

AAnnaallyyttiiccaall SSoolluuttiioonn
In an optimal control problem the aim is to find the optimal
time path of the decision variable, which maximises a value
functional. This problem is much more difficult than finding
the maximum of a function in standard calculus because the
solution consists of an entire function, the time path of the
decision variable. In a complicated mathematical problem it
is often useful to start by guessing the solution. Indeed,
mathematicians often proceed in the same way as desperate
students, who guess the solution of an equation and then
check its validity. How successful a guess is depends on
intuition, experience and luck. In an optimal control
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problem it is naturally not realistic to guess the exact form
of the optimal time path of the decision variable. Still, for
analytical purposes we may conjecture that the optimal
time path of the decision variable, , is known. Then, the
functional, , attains a maximum for a given initial
value of the state variable, x0. 

(14)

V*(x0), which is called the optimal value function, is the
maximum value of the value functional, V(x0, ), if the
decisionmaker chooses the best time path, , of the
decision variable.9 Once it is assumed that the
decisionmaker behaves optimally, the value of a project
depends only on the starting value of the state variable, x0.
For this reason, the time path of the decision variable is not
an argument in the optimal value function, V*(x0). In the
jargon of the optimal control literature, the time path of the
decision variable has been ‘maximised out’. Thus, the
assumption that the decisionmaker behaves optimally
transforms the functional, V(x0, ), into the function,
V*(x0). This is an important mathematical simplification
because standard calculus can be applied to the optimal
value function, V*(x0), which is a function and not a
functional.

In financial economics it is usually assumed that the
decisionmaker chooses the optimal time path of the
decision variable that maximises the present value of the
stream of income generated by an asset. The optimal value
function assumes that the decisionmaker maximises the
value of an asset, but other behavioural assumptions may be
more realistic. In the wake of the Enron scandal, American
share prices fell because the public had lost the belief that
corporate managers maximise the value of firms on behalf
of shareholders. Different assumptions on the behaviour of
decisionmakers produce different asset values. An
important strand of financial literature considers the
conflict of interest between managers and shareholders,
which affects corporate governance and hence the value of
firms. 

The optimal value function shows the relationship between
the value of a firm and its physical capital stock, assuming
optimal behaviour. Differentiating the optimal value
function yields the value of a single capital unit, the so-
called shadow price of capital. 

(15)

The shadow price of capital, λ0, measures the effect of an
extra capital unit on the value of a firm. For example, the
shadow price of a fish is $10 if adding an extra fish to a fish
stock increases the fishery’s value by $10. Similarly,
extracting one unit of ore reduces the value of a mine by
the ore’s shadow price. An extra capital unit adds value to
an enterprise because it contributes to current and future
revenues. Since the shadow price of capital is the first
derivative of the optimal value function, V*(x0), it is
assumed that the decisionmaker behaves optimally after the
extra capital unit is added. The shadow price of capital is
indeterminate if the behaviour of the decisionmaker is
unknown. 

John Maynard Keynes introduced the notion of ‘user cost’
in the theory of the firm. He defined user cost as ‘the
reduction in the value of the [capital] equipment due to
using it as compared with not using it’. Keynes argued that
firms add the marginal user cost of capital to the marginal
factor cost when deciding on the optimal production plan: 

‘User cost constitutes one of the links between the
present and the future. For in deciding his scale of
production an entrepreneur has to exercise a choice
between using up his equipment now and preserving it
to be used later on. It is the expected sacrifice of future
benefit involved in present use which determines the
amount of the user cost, and it is the marginal amount of
this sacrifice which, together with the marginal factor
cost and the expectation of the marginal proceeds,
determines his scale of production.’ 
(Keynes, 1936: ch. 6)

A firm’s short-run supply curve lies above the marginal
factor cost curve because ‘the short-period supply price is
the sum of the marginal factor cost and the marginal user
cost’. Keynes viewed the theory of value as incomplete
because it did not pay attention to the user cost of capital in
the production process: 

‘Supply price is, I think, an incompletely defined term, if
the problem of defining user cost has been ignored.’

‘Now in the modern theory of value it has been a usual
practice to equate the short-period supply price to the
marginal factor cost alone. It is obvious, however, that
this is only legitimate if marginal user cost is zero, … .’
(Keynes, 1936: ch. 6)

Keynes’ contribution to the theory of value, the notion of
user cost, is now largely forgotten. Even advanced
microeconomic textbooks do not discuss user cost. This
may be the case because Keynes did not develop a formal
dynamic optimisation framework, which would have
elucidated the concept of user cost. Despite his extensive
mathematical training, Keynes used mathematics sparingly
in his writings. But the concept of user cost has become
central in resource economics, where in Keynes’ view ‘the
necessity of allowing for user cost is obvious’. Keynes,
however, had more in mind than applying user cost just to
the exploitation of natural resources. The next quotation
shows that he believed that capital equipment is subject to
user cost in any enterprise: 

‘In the case of raw materials the necessity of allowing for
user cost is obvious;–if a ton of copper is used up to-day
it cannot be used to-morrow, and the value which the
copper would have for the purpose of to-morrow must
clearly be reckoned as a part of the marginal cost. But
the fact has been overlooked that copper is only an
extreme case of what occurs whenever capital
equipment is used to produce. The assumption that
there is a sharp division between raw materials where
we must allow for the disinvestment due to using them
and fixed capital where we can safely neglect it does not
correspond to the facts;–especially in normal conditions
where equipment is falling due for replacement every
year and the use of equipment brings nearer the date at
which replacement is necessary.’ (Keynes, 1936: ch. 6) 
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The following steps derive the optimum conditions for a
firm that considers the user cost of physical capital.10 At any
time t, the value of a firm equals the shadow price of capital
multiplied by the firm’s capital stock, λ(t)x(t). Since the
decision on the optimal time path of output is made at time
0, the shadow price of capital at time t > 0 is expressed in
present value terms. Thus, λ(t) is the marginal value of a
capital unit that will become available at time t, expressed
in present value terms at time 0, and λ(t)x(t) is the
corresponding present value of the firm. At each point in
time, the value of the firm changes by 

. (16)

and are the time derivatives dx/dt and dλ/dt. The
firm’s value changes because the amount of physical capital
changes, , and the value of this capital changes, . Let
f(x,u) be the net revenue at time t, expressed in present
value terms. The decisionmaker chooses the time path of
output that maximises the sum of the momentary net
revenue and the change in the value of the firm at every
instant.

(17)

The time path of the capital stock must fulfil the constraint
= g(x,u). This constraint gives rise to an optimal control

problem because the growth rate of the state variable, ,
depends both on the decision variable, u, and the state
variable, x. Equation (4), which applies to a renewable
resource, provides and example for this type of constraint.
Substituting the dynamic constraint into equation (17)
yields: 

(18)

Partial differentiation of expression (18) produces two
conditions that the optimal time paths of the decision
variable and state variable must fulfil:

(19)

(20)

The subscripts u and x indicate partial derivatives. For
example, fu=∂f/∂u measures the effect of a small change in
the decision variable, u, on net revenue. Equation (19) is
called the maximum principle, and equation (20), which
has many names, is known as the auxiliary, costate, adjoint,
influence or multiplier equation. Some authors also call the
entire optimisation procedure Pontryagin’s maximum
principle.

Consider the economic interpretation of the maximum
principle (19). Since capital is used up in the production
process, a small increase in output, u, reduces the value of
the firm by lowering the growth rate of the capital stock.
The marginal user cost of capital –λgu, is the fall in the
growth rate of the capital stock, gu < 0, valued at the
shadow price of capital, λ. The maximum principle says
that at each instant along the optimal time path of
production, the effect of a small change in output on net
revenue, fu, must equal the marginal user cost of capital,

–λgu. It is worthwhile to raise output until the increase in
net revenue is counterbalanced by the reduction in the
firm’s value from using its capital equipment more
intensively. This is what Keynes had in mind when he
argued that ‘it is the marginal amount of this sacrifice [the
user cost] which, together with the marginal factor cost and
the expectation of the marginal proceeds, determines his
scale of production.’11

The maximum principle can be derived from the so-called
Hamiltonian, an auxiliary function that is defined as
H = f+λg. Just set the partial derivative of the Hamiltonian
equal to zero, Hu = fu+λgu = 0. The second term in the
Hamiltonian, λg, is the user cost of capital, which yields the
marginal user cost in the maximum principle, Hu. The
Hamiltonian has an interesting economic interpretation: it
measures the loss that arises when production is suspended
for an instant, holding the capital stock constant.12 This loss
consists of the sum of the momentary net revenue, f, and
the user cost of capital, λg. It should be noted that the user
cost can be positive or negative. A fishery whose initial fish
stock is less than the steady state value will choose a time
path of fishing that allows for an increase in the fish stock 
(g > 0), whereas the fish stock will fall if x0 exceeds the
steady state value (g < 0). However, it is the marginal user
cost that enters the maximum principle, and, using Keynes’
words, ‘it is difficult to conceive of a case where the
marginal user cost associated with an increase in [output,
i.e. –λgu] will be other than positive’.

The operation of a mine is a special case that leads to a
problem in the calculus of variations. Since the
decisionmaker has complete control of the ore reserve, the
general constraint , =g(x,u), simplifies to equation (2),

which is =g(u)=–u. Therefore, the marginal user cost
equals the shadow price of ore, –λgu = –λ(–1) = λ. The
maximum principle then implies that along the optimal time
path of ore extraction marginal net revenue, fu, equals the
shadow price of ore, λ. In the preceding quotation, Keynes
put it this way, ‘if a ton of copper is used up to-day it cannot
be used to-morrow, and the value which the copper would
have for the purpose of to-morrow must clearly be reckoned
as a part of the marginal cost’. 

Figure 1 illustrates the maximum principle. The horizontal
line shows marginal revenue, MR, and the upward sloping
line represents marginal factor cost, MC. Static optimisation
produces output u*, where marginal net revenue is zero,
fu = MR–MC = 0 .The dynamic optimum occurs at the
lower output, ut, because the decisionmaker adds the
marginal user cost, –λgu, to marginal factor cost. For
example, the private owner of a natural resource produces
ut, whereas output is u* in an open access system, as in the
case of fish stocks in international waters. Privatisation
works against overexploitation of natural resources because
the owner of a resource cares about the user cost of capital.
Without well-defined property rights, the decisionmaker
does not take into consideration the effect of the output
decision on the asset value of the resource. It should be
noted that Figure 1, which is borrowed from standard
microeconomics, applies to a point in time, whereas
dynamic optimisation deals with behaviour over time.
Usually, a firm’s output changes over time. For example, it
may gradually fall from ut to ut+s, and it is ut only at an
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instant in the project’s life. Thus, the location of the
Keynesian short-run supply depends on the momentary
value of marginal user cost.

The costate equation (20) also has an economic
interpretation. At a point in time, an extra capital unit
increases net revenue by fx, and the growth rate of capital
changes by gx. The total benefit of an extra capital unit is
the sum of the immediate increase in net revenue, fx, and
the instantaneous change in the value of the firm, λgx. The
cost of holding capital is the fall in its shadow price,

<0.13 Thus, the costate equation shows that along the
optimal time path of capital the firm maintains a sufficient
capital stock so that the total marginal benefit of capital,
fx+λgx, equals its marginal holding cost, – . Converting
the costate equation (20) from present values to current
values clarifies the nature of the holding cost of capital. Let
µ(t) be the shadow price of a capital unit that becomes
available at time t, measured at time t. Since λ(t) is the
corresponding present value, 

. (21)

Differentiating equation (21) yields = µe–rt+µe–rt(–r).
Next, substitute equation (21) and its first derivative into
the costate equation (20). 

(22)

Finally, multiply by ert, substitute Fx = fxert, and rearrange. 

(23)

The transformed costate equation holds at any time point t.
The right-hand side shows the marginal holding cost of
capital, which equals the opportunity cost of a capital unit,
rµ, adjusted for a possible capital gain or loss, µ. Thus,
along the optimal time path of capital, the total marginal
benefit of capital, , equals the holding cost of
capital. In the steady state, the current value of the shadow
price of capital is constant, µ=0. Then, the total marginal
benefit of capital, , equals the opportunity cost of
capital, rµ. 

NNootteess
1 The first problem in the calculus of variations was the so-called

brachistochrone problem, which was formulated by Galileo in
1630 and solved by James and John Bernoulli in the 1690s.
Galileo sought the form of a path along which a ball would roll
downward, traversing a given horizontal distance, in the
shortest possible time. The Bernoulli brothers found the exact
path, which is first steep and then flat.

2 See also Dreyfus (2002). 

3 It is more likely that the fishery will be operated on a
sustainable basis if the biological renewal is high and the
discount rate is low. See Conrad (1999: 15).

4 Solver is part of Excel, but you probably need to install it.
Select ‘Add-Ins …’ in the Excel Tools menu, and click on ‘Solver
Add-in’. Then, Solver will appear in the Tools menu, where it
can be started. If you have problems with the installation of
Solver, search for ‘load add-in’ in the Excel Help facility.   

5 www.solver.com includes a tutorial, sample programs and
upgrades to Solver. 

6 Walsh (2003: ch. 2) derives equation (11), which uses per
capita terms, from a constraint with aggregate quantities.

7 In the case of the Ramsey model, Solver can handle about 30
years.  

8 The full formulas in cells B9 and C9 are:

Cell B9: =(($B$5*$B$6*(1+$B$8))/((1+$B$8)*(1+$B$2)-(1-
$B$7)))^(1/(1-$B$6))

Cell C9: =(($C$5*$C$6*(1+$C$8))/((1+$C$8)*(1+$C$2)-(1-
$C$7)))^(1/(1-$C$6))

9 The optimal value function is analogous to the indirect utility
function in static microeconomic analysis. 

10 Dorfman (1969), Kamien and Schwartz (1981: Part II, Sec. 20)
and Silberberg (1990: ch. 18) provide more detail.

11 Keynes was also among the first to grasp the dynamic
optimisation problem of a forward looking consumer. Ramsey
(1928: 547) acknowledged Keynes’ help in the interpretation of
the optimum condition that arises in the analysis of the
consumption-saving decision. 

12 The Hamiltonian equals the negative of the time derivative of
the optimal value function, holding the capital stock constant.
See Kamien and Schwartz (1981: 239) and Silberberg (1990:
620–621). 

13 It is possible that the shadow price of capital rises along the
optimal time path.  
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