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1 Introduction

Natural resources can be de�ned as natural assets or endowments from which
we derive value (utility). A broad de�nition would include environmental as-
sets such as wilderness which, while they can be destroyed by human activity,
do not have to be consumed in order to have value. We could also include
the environment as a provider of �ecosystem services�or as an assimilator of
waste. Here we adopt a narrower de�nition, however, and focus on natural
resources that must be extracted or harvested in order to have value, either
directly or as inputs into production processes.
A distinction is usually made between renewable and non-renewable nat-

ural resources. Renewable resources are capable of natural replenishment or
growth on some economically meaningful timescale, for example �sh stocks
or forests. Non-renewable resources are those that are incapable of any sig-
ni�cant growth on such a timescale, for example fossil fuels (coal, oil and gas)
metal ores and diamonds. Stocks of non-renewable resources are therefore
essentially �xed and are necessarily depleted through extraction.
In general, because natural resources are stocks they are extracted or

harvested over more than one period. The e¢ cient and optimal use of natural
resources therefore has an inherent time dimension.
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2 Capital theory

We can think of natural resources as a form of capital (hence natural capital).
Holding a natural resource stock is analogous to holding a (manufactured)
capital asset or a �nancial asset. The return from holding the asset should
be at least as high as would be expected if the current value of the asset were
invested elsewhere.
From capital theory we have the arbitrage equation for an asset, which

we can write as
y (t) = rp (t)� _p; (1)

where y (t) is the yield from the asset at time t, p (t) is the price (value) of
the asset at time t, _p is the rate of increase of p over time (i.e., dp (t) =dt) and
r is the rate of return on an appropriate alternative asset (often referred to
as the numeraire asset), for example, the interest rate on a cash investment.
If _p is positive, the asset is appreciating in value, whereas if _p is negative
the asset is depreciating in value, as would usually be the case for manufac-
tured capital (for a cash investment, _p is zero). The arbitrage equation (also
known as the �short run equation of yield�) gives the condition for holding
an asset: it states that the yield should be (at least) equal to the return from
the numeraire asset, less any appreciation in the asset�s value or plus any
depreciation in its value. If the arbitrage equation is not satis�ed, it would
be better to sell the asset and invest in the numeraire asset instead.
A stock of a non-renewable resource is said to be sterile. This means that

it does not exhibit any intrinsic growth and does not (therefore) produce a
yield. In this case, y (t) is equal to zero. If we then rearrange (1) we get

_p

p (t)
= r: (2)

This is a version of a rule for the e¢ cient extraction of a non-renewable
resource stock known as Hotelling�s Rule. Equation (2) states that the
value of the non-renewable resource stock must increase at a rate equal to
the rate of return on the numeraire asset.
A renewable resource stock, on the other hand, is productive through

natural growth and is therefore capable of producing a yield. Assuming, for
the sake of argument, that _p = 0, equation (1) can be rearranged to give

y (t)

p (t)
= r: (3)

Equation (3) requires that the yield (or rent) from the resource is su¢ cient
to provide an �internal rate of return�(y (t) =p (t)) at least as great as the
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interest rate r. Given one or two assumptions, this is equivalent to requiring
that the growth rate of the resource is equated with the interest rate.

3 Discounting

In general, individuals exhibit positive time preferences over consumption.
Thus, consumption (money) now is preferred to consumption (money) de-
ferred to a later date. In capital markets, interest rates are the prices that
induce individuals to save, i.e., to forego consumption now in favour of con-
sumption later. Market interest rates are a¤ected by risk, in�ation, taxation,
etc., but we can think of an underlying social discount rate or �pure�social
rate of time preference which a social planner might use in decision making.
We will henceforth denote this rate as r. Note that since the discount rate
and the interest rate are essentially the same, the discount rate re�ects the
opportunity cost of investment (saving).1

If, from (2), we have
_p = rp (t) ;

then it follows that
p (t) = p (0) ert;

where p (0) is the price at t = 0. It then follows that

p (0) = p (t) e�rt;

so that p (0) is the present value of p (t) at t = 0. Since this must hold for
any point in time, Hotelling�s Rule implies that the discounted resource price
is constant along an e¢ cient extraction path.
In discrete time notation, we can write this condition as

p0 =

�
1

1 + �

�t
pt; t = 1; 2; :::T;

or, equivalently,
pt
p0
= [1 + �]t ; t = 1; 2; :::T;

where � is the discrete time discount rate and T is an arbitrary �nal planning
period.

1You are encouraged to read more about discounting. See, for example, Conrad p.4
and Perman, et al., p.361 and elsewhere.
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Recall that the present value of a stream of payments or pro�ts v (t) over
time is given by Z T

0

v (t) e�rtdt

in continuous time, or
TX
t=0

�
1

1 + �

�t
vt

in discrete time. Remember that

e�r =
1

1 + �
, r = ln (1 + �) ;

so that the discrete-time rate and the continuous rate are not equivalent.

4 A simple resource allocation problem

Consider a very simple, discrete time, resource allocation problem. A com-
pany owns a small non-renewable resource stock of initial size x0 and intends
to extract all of it within just two periods. Assume that the value of the
resource when extracted is a function only of the quantity extracted in each
period, thus vt � vt (qt). We can write the company�s (present value) max-
imisation problem, choosing q1 and q2, as

max
qt

1

1 + �
v1 (q1) +

�
1

1 + �

�2
v2 (q2) (4)

subject to the constraint that

q1 + q2 = x0:

We can write a Lagrangian function for this problem as

L � 1

1 + �
v1 (q1) +

�
1

1 + �

�2
v2 (q2) + � [x0 � q1 � q2] ; (5)

where � is the Lagrange multiplier on the stock constraint. For an optimum,
we take the derivatives of the Lagrangian with respect to q1 and q2 and set
them equal to zero. This gives us the two �rst order (necessary) conditions

Lq1 =
1

1 + �
v01 (q

�
1)� � = 0 (6)
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and

Lq2 =
�
1

1 + �

�2
v02 (q

�
2)� � = 0; (7)

where v0t (qt) is the �rst derivative of vt (qt) with respect to qt. Solving (6)
and (7) for � and rearranging, we obtain

v02 (q
�
2)

v01 (q
�
1)
= 1 + � , v02 (q

�
2)� v01 (q�1)
v01 (q

�
1)

= �: (8)

This is Hotelling�s Rule. If we assume that extraction costs are zero, we
can de�ne vt (qt) � ptqt, where pt is the resource price in period t. Then
v0t (qt) = pt and (8) becomes

p2
p1
= 1 + � , p2 � p1

p1
= �

as before. In continuous time this is equivalent to

_p

p (t)
= r;

as we had before.
Alternatively, we could equally well attach a multiplier to a stock con-

straint at each point in time. Thus, we could write

L � 1

1 + �
v1 (q1) +

�
1

1 + �

�2
v2 (q2) +

1

1 + �
�1 [x0 � x1]

+

�
1

1 + �

�2
�2 [x1 � q1 � x2] +

�
1

1 + �

�3
�3 [x2 � q2] : (9)

Notice that here we have discounted the multiplier on the stock constraint
as well as the value of extraction in each period back to the present. Notice,
also, that we have added a �nal constraint which ensures exhaustion of the
resource at t = 3 (x3 = x2 � q2 = 0). The �rst order conditions for q1 and q2
are now given by

Lq1 =
1

1 + �
v01 (q

�
1)�

�
1

1 + �

�2
�2 = 0 (10)

and

Lq2 =
�
1

1 + �

�2
v02 (q

�
2)�

�
1

1 + �

�3
�3 = 0: (11)
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If the Lagrangian is maximised by the optimal value of q1, however, then it
should also be maximised by the corresponding value of x2, so that

Lx2 = �
�
1

1 + �

�2
�2 +

�
1

1 + �

�3
�3 = 0 (12)

should also hold.2 The condition for x�2 implies that

�2 =
1

1 + �
�3 (13)

and hence, by substitution,

v01 (q
�
1) =

1

1 + �
v02 (q

�
2) : (14)

We have obtained the same result as before, but notice that we have also
established that the multiplier on the stock constraint, which is the shadow
price (marginal value) of the stock at each point in time, is also increasing
at the discount rate.
We can easily adapt (9) to set the problem in terms of a renewable resource

by incorporating a growth function gt (xt) into each of the stock constraints
for t = 1; 2; 3. Thus,

L � 1

1 + �
v1 (q1) +

�
1

1 + �

�2
v2 (q2) +

1

1 + �
�1 [x0 + g0 (x0)� x1]

+

�
1

1 + �

�2
�2 [x1 + g1 (x1)� q1 � x2] +

�
1

1 + �

�3
�3 [x2 + g2 (x2)� q2 � x3] ;

(15)

where, notice, we have left open the possibility that x3 is non-zero! Our �rst
order conditions are now given by

Lq1 =
1

1 + �
v01 (q

�
1)�

�
1

1 + �

�2
�2 = 0 (16)

and

Lq2 =
�
1

1 + �

�2
v02 (q

�
2)�

�
1

1 + �

�3
�3 = 0; (17)

2In a multi-period problem, this would in general hold for all qt and xt+1 since the
latter depends on the choice of the former. Here, of course, we have assumed that q0 = 0
so that x1 = x0 is �xed, as is x3 = 0.

6



together with

Lx2 = �
�
1

1 + �

�2
�2 +

�
1

1 + �

�3
�3 [1 + g

0
2 (x

�
2)] = 0: (18)

Now we can �nd �
1

1 + �

�2
�2 =

�
1

1 + �

�3
�3 [1 + g

0
2 (x

�
2)] (19)

so that

1

1 + �
v01 (q1) =

�
1

1 + �

�2
v02 (q2) [1 + g

0
2 (x

�
2)]

) v01 (q1) [1 + �] = v
0
2 (q2) [1 + g

0
2 (x

�
2)] (20)

and therefore

v02 (q
�
2)

v01 (q
�
1)
=

1 + �

1 + g02 (x
�
2)

, v02 (q
�
2)� v01 (q�1)
v01 (q

�
1)

= � � v
0
2 (q

�
2) g

0
2 (x

�
2)

v01 (q
�
1)

: (21)

Now our rule for e¢ cient exploitation of the resource takes account of the
growth of the resource. To simplify this expression a little, notice that

lim
t2!t1

v02 (q2) g
0
2 (x2)

v01 (q1)
= g0 (x) ;

so that, in continuous time, the rule becomes

dv0 (q) =dt

v0 (q)
= r � g0 (x) ; (22)

or, if harvesting is costless, so that v0 (q) = p,

_p

p
= r � g0 (x) : (23)

We can see more readily that this is just a modi�ed form of Hotelling�s Rule,
except that, with a growing resource, the resource price does not have to rise
at the same rate as the interest rate. Indeed, if r = g0 (x), we do not require
the price to increase at all: in e¤ect, the natural growth of the resource is
providing the �interest�we require. If _p = 0, (23) can be rearranged to give

p � g0 (x)
p

= r;

which is equivalent to our yield expression (3).
Clearly, the above approach to determining the optimal use of a natural

resource over time can be generalised to T periods. We will return to this
topic in a later lecture.
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5 Further reading

Look at Conrad (1999), pp.1-8, and Hanley, Shogren and White (2007),
pp.214-218.
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