Economics Network

Survey of Student Attitudes, Expectations and Behaviour in a New Funding Regime
Economics Network Students’ Survey 2013-14

- Design:

<table>
<thead>
<tr>
<th></th>
<th>Cohort 2013</th>
<th>Cohort 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Treated</td>
<td>First Years (High)</td>
<td>First Years (High)</td>
</tr>
<tr>
<td>Treated</td>
<td>Second Years (Low)</td>
<td>Second Years (High)</td>
</tr>
</tbody>
</table>

- Problem: No “usual” control group
- Identification: Use (quasi) diff in diffs “in reverse”
Dependency

- Same students may have answered in 2013 and 2014. No individual data to model this.
- Check for this using clustering within universities
- And also bootstrapping errors
Data

- 17 universities in 2013; 18 in 2014.
- 15 returned data in both years; two are Scottish, others English
- 5-point Likert responses
- Total surveys returned = 6121
<table>
<thead>
<tr>
<th>YEAR</th>
<th>2013</th>
<th>2014</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td>1,990</td>
<td>1,367</td>
<td>3,357</td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td>1,422</td>
<td>1,192</td>
<td>2,614</td>
</tr>
<tr>
<td>OTHER</td>
<td>22</td>
<td>62</td>
<td>84</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,434</td>
<td>2,621</td>
<td>6,055</td>
</tr>
<tr>
<td>12 Universities Used in main analysis</td>
<td>COHORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>2014</td>
<td>Total</td>
</tr>
<tr>
<td>YEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST YEAR</td>
<td>940</td>
<td>705</td>
<td>1,645</td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td>707</td>
<td>685</td>
<td>1,392</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,647</td>
<td>1,390</td>
<td>3,037</td>
</tr>
</tbody>
</table>
Specification

• We use:

\[y = \beta_0 + \beta_1 C + \beta_2 G + \beta_3 CG + \text{other covariates} \]

*\(C \) Cohort

*\(G \) Treatment group

Other covariates are gender, unigroup

Unigroup is Russell, Post92, Pre92, Other
Regressions

• Likert responses collapsed into binary variables and use:
 • Logit, probit and LPM
 • With and without clustering within universities
 • Boostrapping errors
• Results are robust to different specifications
• We report the logit results without clustering (and without unigroup)
• Results sometimes sensitive to the “collapsing”
• Some results reported for just Russell Group
Significant DID variables from logits

Paidwork

• Coded “0-5 hours” against “6 and above”. Students paying higher fees work less.

• Probability of working >6 hours for low fees = 0.21445. Value falls by 0.064 for high fees – around a quarter.
Significant DID variables from logits

Reputation

• coded “SA”=1 against “other”. Higher fees more likely to strongly agree.

• Prob of SA for low fees = .4093. Increases by .113076 for high fees (approx. a quarter)

• With unigroup variable the change is now around .07

• Prob SA for low fees =.45 and increases to .52 for high fees.
Significant DID variables from logits

Content

• Coded as for reputation. High fees students more likely to be (strongly) concerned with content of the course in applying.

• Prob for low fees = .08. Increases by .04 which is around a half. However, the magnitude is small overall for both groups.
Significant DID variables from logits

Cost

• Coded as above. High fees students less likely to be studying because of fear of rising costs in future

• Prob for low fees = 0.0945. Falls by 0.03487 around one third. This is in line with other studies.
Significant DID variables from logits

Independent Work

• Coded as “<10” and “>10” hours.
• Prob for low fees: .52321. Increases by .098 (around a fifth).
Significant DID variables from logits

Induction

• How valuable is induction? Coded as very valuable (0) against “other”. High fee students less likely to rate induction as very valuable.

• Prob (less than very valuable) for low fees: .905 increases by .03. This is slight but significant (at 10%)
Significant DID variables from logits

Quantity of IT and e-learning

• coded “less” against “more / much more” than expected. High fee students less likely to answer more/much more.

• Prob (more than exps) for low fees: .3611. This falls by .10442 for high fees (around 1/3).
Significant DID variables from logits

Quantity of group work that doesn’t count towards mark

- Coded “less/matches exps” against “more than expected”. High fee students said that there was more of this kind of work than they had expected.
- Low fee prob: .0904. Increases by .0444
Significant DID variables from logits

Development of IT Skills

• Coded as 0 for “other” against “significantly better” than expected. High fee students less likely to say significantly better.

• Prob for low fees = 0.049 falls by .012 for high fees. So the proportion is small (around 5% of low fee students but this falls to around 3.7%).

• If coded as “matches or less” against “exceeds or strongly exceeds” we also get significant differences. High fees less likely to say exceeds or strongly exceeds.

• Prob for low fees = .246 and this falls by .063 (around one quarter)
Other Codings for Dependent Variable

Feedback: “worse” vs “expected or better”.

- High fee students less likely to be satisfied with the feedback.
- Low fee prob=.512 falls by 0.067 for high fee students to .445 (6% less likely to be satisfied)

Quantity of Assessment: “worse” against “matches or better”.

- High fee students are less likely to say that it matches or exceeds expectations.
- Low fee prob= .776 falls by 7 percent points to .704
Russell Group Only

• Repetition in lectures (65% to 54%)
• Support – high fee payers less likely to be satisfied (fall from 23% to 15% prob)
• Essays +ve high fee payers feel there is more than expected (4% to 10%)
• Groupcounts –ve High fee payers expected more of this. Falls from 25% to 13% prob in saying there is more than expected.
• Problemsolving +ve High fee payers say better than expected (increase from 2% to 6% prob)
• Reputation not important (it was always the case?)
• Paidwork, Qty of IT and independent study still important
• Development of IT skills still important (falls by around 0.068)
• Induction not significant.
Summary

• University choice questions (Reputation, content, cost)
• Behaviour questions (Paid work, independent work)
• Attitudes/Expectations (quantity IT and e-learning; development of IT skills; group work; feedback; qty assessment; other RG specific vars)

• Where next with this data?