

Interpreting Multivariate Regressions

Heather Brown Heather.brown@ncl.ac.uk Institute of Health&Society

Outline

- Define Key Terms
- Define Multivariate Regression
- Define Key Types of Models you will come across in the literature.
- Identify common problems and potential solutions
- Exercise

Introduction

- Most statistical analysis involves the investigation of some supposed relationship between variables.
- Variables can be a feature or characteristics of a person, a place, an object or a situation that the experimenter wishes to investigate.
- A variable comprises different values or categories and there are different types of variables.

Types of Variables

Institute of

Health&Society Interval variable is a measurement where the difference between 2 values is meaningful.

An example would be income. Say you had 3 people who earned £15000, £20000, and £25000. The middle person makes £5000 more than the first person and £5000 less than the third person.

• Ratio variable has all the properties of an interval variable but also has a clear definition of 0.0.

Height, weight, and age are all ratio variables. For this type of variable can use the ratio of measurements. A weight of 4 grams is twice that of 2 grams. A 30 year old is twice as old as a 15 year old.

Types of Variables

Institute of Health&Society

• Categorical or Nominal variable is for mutually exclusive but not ordered categories.

Gender (two categories: male and female)and ethnicity (white, black, Asian, etc). You can assign categories to a variable but no clear order between categories.

 Ordinal variable is where the order matters but not the difference between values

Educational attainment (GCSE, A-Level, Degree)

Can classify groups from lowest to highest but the spacing between the groups will not be equal. For example the difference between GCSE and A-level is not the same as the difference between A-level and a degree

Why does it matter how a variable is classified?

- Statistical analysis assumes that variables have a specific level of measurement.
- For example, it would not make sense to calculate average gender.
- Or you could not calculate average educational attainment.
- Can only calculate averages for interval and ratio variables

Key Terms

- Dependent variable is the output of interest.
- Independent or explanatory variables have an effect on the dependent variable.

Types of Data

- Cross-sectional data contains a single observation for each individual, household, or community etc.)
- Panel data contains repeated observations of the same individual and same variables over time

Pros of Panel Data

- Gives researchers a large number of data points because have repeated observations of the same variables over time for the same individuals. This increases the degrees of freedom (how much data you need to have in order to accurately predict how your explanatory variable will affect the dependent variable)
- Can answer important questions that may give misleading results in cross-sectional data such as changes in employment status after a serious illness during different points of the lifecycle.

Cons of Panel Data

- Sample Attrition
- Participants drop out or withdraw or die over time.

Hypotheses

- Statistical analysis usually wants to test a hypothesis.
- A hypothesis is a relationship between variables based on theory.
- Existing datasets or collected data can be used to test your hypotheses.

Why is Multiple Regression Important?

- Real world is complex
 - Simple analyses fail to consider this complexity
- Several possible causes associated with a problem.
- Alternatively, there may be several factors necessary for a solution.

Steps in Multiple Regression

- 1. State the research hypothesis.
- 2. Find an appropriate dataset or collect data.
- 3. Assess each variable separately (mean, standard deviation, frequency distribution).
- 4. Is the dependent variable normally distributed?
- 5. Test if the independent variables are related to each other. (correlation coefficient or scatter plot).

Steps in Multiple Regression

- 6. Choose a model specification
- 7. Estimate the regression equation.
- Calculate tests for statistical significance of each explanatory variable and the equation as a whole.
- 9. Reject or accept research hypothesis
- 10. Explain the practical implications of your findings

The Basic Format

Institute of Health&Society

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$

Y is the dependent variable, what is being predicted or explained. α is the constant or intercept (tells you what the dependent variable would be if all the explanatory variables were equal to zero.)

 $\beta_{1,}\beta_{2}$, and β_{3} , are the slopes or beta coefficients. This is what you estimate. Shows the effect of the explanatory variables on the dependent variable.

 $X_{1,} X_{2}$, and X_{3} contain the data on your explanatory variables ε is a random error term which controls for all other factors that affect the dependent variable and are not measured by your explanatory variables.

Estimation

- What model structure you use depends on your data and research question
- Some options are:
- 1. Ordinary Least Squares
 - Simplest basic forms can be done with pen and paper
- 2. Generalised Least Squares (Random Effects)
- 3. Fixed effects
- 4. Binary Probability Models (probit/logit)

Institute of Health&Society

Example

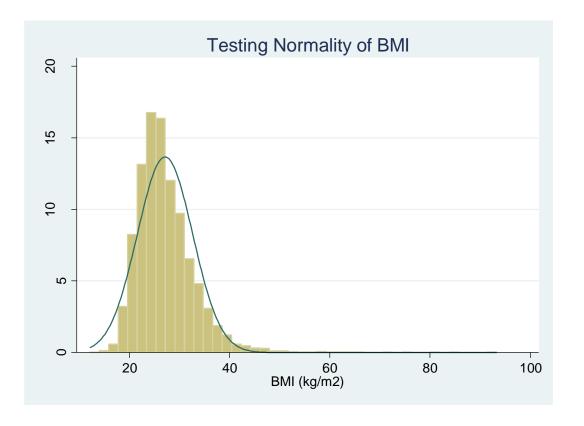
Research question (Step 1)

- Suppose you are on a health and well being board and want to know more about the determinants of obesity.
- You have been tasked with investigating the relationship between education and obesity.
- You think that those with more education will be less likely to be obese.
- This is based on the Grossman model (Grossman 1972)

Data (Step 2)

- We are going to use data from waves 6-9 (2006-2009) of the Household Income and Labour Dynamics of Australia (HILDA) survey.
- It is a nationally representative survey of households in Australia which began in 2001.
- All household members over the age of 15 are interviewed on an annual basis.
- More information about the data can be found on: <u>http://www.melbourneinstitute.com/hilda/</u>

Descriptive Statistics (Step 3)


Variable	Obs	Mean	Std. Dev.	Min	Max
BMI2	22270	27.11	5.52	12.1	93.3
age	24987	44.65	11.06	25	65
female	24987	0.52	0.50	0	1
highschool	24877	0.12	0.33	0	1
cert1_2	24877	0.01	0.12	0	1
cert3_4	24877	0.23	0.42	0	1
diploma	24877	0.10	0.30	0	1
degree	24877	0.28	0.45	0	1
postgrad	24877	0.12	0.33	0	1
disadvanta~d	24984	0.27	0.44	0	1
loghhincome	24860	10.30	0.71	4.65	13.74
smokes	22914	0.21	0.41	0	1
frequent_pa	22985	0.50	0.50	0	1
married	24979	0.62	0.49	0	1
employed	24987	0.77	0.42	0	1
unemployed	24987	0.02	0.15	0	1

Institute of Health&Society

• Is the dependent variable normally distributed?

Testing for multicollinearity (Step 5)

	age	female	highsc~l	cert1_2	cert3_4	diploma	degree	postgrac
ge		Shows	s correlation	between ag	e and fema	le		
	0.00	1						
ighschool	-0.10	0.04	1					
	0.02	0.02	-0.04	1				
	-0.01	-0.18	-0.20	-0.06	1			
iploma	0.01	0.01	-0.13	-0.04	-0.18	1		
egree	-0.12	0.04	-0.23	-0.08	-0.34	-0.21	1	
ostgrad	0.00	0.02	-0.14	-0.04	-0.20	-0.13	0.59	1
sadvanta~d	0.00	0.00	0.01	0.04	0.02	-0.05	-0.14	-0.11
ghhincome	-0.02	-0.06	-0.03	-0.05	-0.07	0.03	0.28	0.20
nokes	-0.11	-0.08	0.02	0.04	0.06	-0.03	-0.16	-0.11
equent_pa	0.03	-0.05	-0.01	0.00	0.01	0.01	0.01	0.04
arried	0.11	-0.02	-0.01	-0.01	-0.02	0.02	0.04	0.04
nployed	-0.23	-0.18	0.00	-0.03	0.05	0.02	0.14	0.09
nemployed	-0.04	0.00	-0.01	0.03	0.01	0.01	-0.03	-0.03
	disadv~d	loghhi~e	smokes	freque~a	married	employed	unempl~d	
isadvanta~d	1							
ghhincome	-0.19	1	Shows	correlation b	between sm	noking status a	ind log of hous	ehold incom
mokes	0.13	-0.10	1					
equent_pa	-0.03	0.08	-0.04	1				
arried	-0.11	-0.04	-0.21	-0.03	1			
nployed	-0.12	0.33	-0.02	0.02	0.03	1		
nemployed	0.05	-0.10	0.06	0.00	-0.06	-0.27	1	

Silver Award

Choose a model specification (Step 6)

Institute of Health&Society

You start by deciding to estimate the following model: $BMI_{it} = \alpha + \beta_1 Individual_{it} + \beta_2 Household_{it} + \beta_3 Health_{it} + \beta_4 Education + \varepsilon_{it}$

 You estimate this model using Ordinary Least Squares

Ordinary Least Squares

Institute of Health&Society

- Zero mean value of ε : $E(\varepsilon | X_{1}, X_{2}, X_{3})=0$ Mean of the error term is equal to zero. Thus, it shouldn't affect your results.
- No serial correlation between error terms $cov(\varepsilon_i, \varepsilon_j)=0, i \neq j$

Error term from data collected this year is independent of the error term on data collected last year

• Homoscedasticity:

 $\operatorname{var}(Y_i) = \sigma^2$

The spread/variance of the dependent variable is the same for all explanatory variables.

Ordinary Least Squares

Institute of Health&Society

• Zero covariance between ε_i and each X variable $\operatorname{cov}(\varepsilon_i, X_{2i}) = \operatorname{cov}(\varepsilon_i, X_{3i}) = 0$

There is no correlation between the error term and the explanatory variables

- The model is correctly specified
 Data does not violate the assumption of the model you choose
- No exact collinearity between the X variables
 Large correlation between two explanatory variables. If
 this happens you can't distinguish a separate effect of
 the variables on the dependent variable

Results (Step 7):

df

15

SS

633535.411 21905

665353.509 21920

31818.0987

Source

Model

Total

Residual

Institute of

Number of obs =

F(15, 21905) =

Adj R-squared =

Prob > F

Root MSE

R-squared

21921

73.34

0.0478

0.0472

5.3779

= 0.0000

=

=

Health&Society

P-value for whole equation

Square root of residual of model (633535.411) divided by the degrees of freedom (15)

BMI2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.037915	.0035642	10.64	0.000	.030929	.044901
female	7239091	.0757189	-9.56	0.000	8723236	5754946
highschool	7481159	.1309774	-5.71	0.000	-1.004841	4913908
cert1_2	.2555938	.3203016	0.80	0.425	3722206	.8834081
cert3_4	4657314	.1091737	-4.27	0.000	6797197	2517432
diploma	6223796	.1369209	-4.55	0.000	8907545	3540047
degree	-1.756052	.1244072	-14.12	0.000	-1.999899	-1.512205
postgrad	.0304309	.1375061	0.22	0.825	239091	.2999528
disadvantaged	.7144755	.0859732	8.31	0.000	.5459619	.8829891
loghhincome	1135894	.0580152	-1.96	0.050	2273034	.0001247
smokes	7047227	.0939824	-7.50	0.000	888935	5205103
frequent_pa	-1.231265	.0731274	-16.84	0.000	-1.3746	-1.08793
married	.0024257	.0781861	0.03	0.975	1508248	.1556762
employed	0861931	.1009191	-0.85	0.393	2840018	.1116157
unemployed	0896252	.2708251	-0.33	0.741	620462	.4412117
cons	28.35373	.6061855	46.77	0.000	27.16556	29.5419

MS

2121.20658

28.9219544

30.3537185

 α (the constant term)

Testing for Homoskedasticity (Step 8)

Institute of Health&Society

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: age female highschool cert1_2 cert3_4 diploma degree postgrad
disadvantaged loghhincome smokes frequent_pa married employed unemployed
```

chi2(15) = 1660.18 Prob > chi2 = 0.0000

- Reject null hypothesis of homoskedasticity
- OLS is not the most efficient model estimate
- Estimated standard errors are incorrect
- F-test is incorrect

Generalised Least Square (Step 6)

Institute of Health&Society

- When heteroskedasticity is present, generalised least squares will be a more efficient estimator than ordinary least squares.
- The variance is re-written as: $var(\varepsilon_i) = \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$
- This is expressed in the error term of our BMI equation:

 $BMI_{it} = \alpha + \beta_1 Individual_{it} + \beta_2 Household_{it} + \beta_3 Health_{it} + \beta_4 Employment + \varepsilon_{it}$

$$\mathcal{E}_{it} = \alpha_i + u_{it}$$

Results:

 \mathbf{i}

Random-effects GLS regress Group variable: pid	ion	Number of obs Number of groups	=	21921 6583
Gloup Vallable, plu	Still assume	Number of groups	_	0000
R-sq: within = 0.0071	explanatory	Obs per group: mi	n =	1
between = 0.0396	variables are	av	rg =	3.3
overall = 0.0388	/independent	ma	- x	4
	from the	Wald chi2(15)	=	382.16
<pre>corr(u_i, X) = 0 (assume</pre>	d) error term	Prob > chi2	=	0.0000

 \leftarrow

Institute of Health&Society

-To rescale chi stat to F-stat rescale by degrees of freedom: 382.16/15=25.48.

BMI2	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	382.10/13
age	.0540196	.0053992	10.01	0.000	.0434374	.0646018	
female	5722987	.1286201	-4.45	0.000	8243895	320208	
highschool	6450872	.2043141	-3.16	0.002	-1.045536	2446388	
cert1_2	1050275	.3927257	-0.27	0.789	8747557	.6647007	
cert3_4	226809	.1601126	-1.42	0.157	5406239	.087006	
diploma	6483214	.2162746	-3.00	0.003	-1.072212	2244309	
degree	-1.508137	.1897108	-7.95	0.000	-1.879963	-1.13631	
postgrad	.0640852	.1910972	0.34	0.737	3104584	.4386289	
disadvantaged	.3279032	.0888517	3.69	0.000	.1537571	.5020492	
loghhincome	0030042	.0446496	-0.07	0.946	0905158	.0845075	
smokes	371592	.0891074	-4.17	0.000	5462392	1969448	
frequent_pa	4029532	.0448181	-8.99	0.000	4907952	3151113	
married	.151293	.0878546	1.72	0.085	0208989	.3234849	
employed	0740042	.0781782	-0.95	0.344	2272307	.0792224	
unemployed	1935166	.1451594	-1.33	0.182	4780238	.0909907	
_cons	25.77389	.5304641	48.59	0.000	24.7342	26.81358	
sigma_u sigma_e	4.9345746 2.15289					(Error term fro	
rho	.84009172	(fraction	ot varia	nce due t	to u_1)	term from las	t year)

Inter-class correlation allows for serial correlation in error term

Do we have our best model?

- Two restrictions for ordinary least squares were relaxed in the generalised least square model.
- 1. Homoskedasticity
- 2. Serial Correlation
- Still one important assumption which may be violated:
 - Explanatory variables are not correlated with the error term.
 - Not likely to be true.

Endogeneity

Institute of Health&Society

- Can lead to bias in the magnitude and significance of your estimated coefficients.
- Three main causes:
- 1. Direction of relationship does Y cause X or X cause Y?
- 2. Correlation of explanatory variables with the error term.
- 3. Omitted variable bias

Model is missing important variables for explaining the dependent variable

What next then?

- Fixed effects models removes the bias from correlation of time constant unobserved characteristics.
- Captured by the term, α_i from the error term which was modified to control for heteroskedacitiy.
- This bias is removed by effectively taking the mean of all time varying explanatory variables.
- If a variable does not vary over time such as gender it is dropped from the model as the mean would be equal to zero.

Results:

Because mean of the female variable is zero

note: female omitted because of collinearity

Fixed-effects (within) regression Group variable: pid	Number of obs = Number of groups =	
R-sq: within = 0.0131 between = 0.0122 overall = 0.0125	Obs per group: min = avg = max =	3.3
corr(u_i, Xb) = -0.2315	F(14,15324) = Prob > F =	11.07

BMI2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.1612163	.0141503	11.39	0.000	.1334801	.1889525
female	0	(omitted)				
highschool	2996822	.4873314	-0.61	0.539	-1.25491	.6555452
cert1_2	6568301	.5701257	-1.15	0.249	-1.774344	.460684
cert3_4	.1238858	.3332258	0.37	0.710	5292763	.777048
diploma	7507973	.5368784	-1.40	0.162	-1.803143	.3015482
degree	139501	.5260689	-0.27	0.791	-1.170658	.8916565
postgrad	.2201849	.3024856	0.73	0.467	3727229	.8130927
disadvantaged	.07102	.108546	0.65	0.513	141743	.2837831
loghhincome	0134885	.0494524	-0.27	0.785	1104211	.0834441
smokes	2607477	.1046585	-2.49	0.013	4658909	0556045
frequent_pa	2834061	.0465141	-6.09	0.000	3745792	192233
married	.2074695	.114112	1.82	0.069	0162036	.4311426
employed	0673977	.0854415	-0.79	0.430	2348732	.1000777
unemployed	2287467	.1492554	-1.53	0.125	521305	.0638115
_cons	20.21425	.7735044	26.13	0.000	18.69809	21.73041
sigma u	5.3729669					
sigma e	2.15289					
rho	.86165903	(fraction	of varia	nce due t	to u_i)	

Variable		Mean	Std. Dev.	Min	Max	Observations
200	overall	44.65	11.06	25	CE.	N = 24987
age	between	44.05	11.00	25		n = 6809
	within		1.08	43.15		T-bar = 3.6697
	within		1.08	43.15	40.15	1-041 = 3.0097
female	overall	0.52	0.50	0	1	N = 24987
	between		0.50	0	1	n = 6809
	within		0.00	0.52	0.52	T-bar = 3.6697
h i a h a a VI	avarall	0.12	0.33	0	1	N - 24977
highsc~l	overall	0.12		0		N = 24877
	between		0.32	0		n = 6777
	within		0.04	-0.63	0.87	T-bar = 3.6708
cert1_2	overall	0.01	0.12	0	1	N = 24877
	between		0.11	0	1	n = 6777
	within		0.03	-0.74	0.76	T-bar = 3.6708
cort2 4	overall	0.22	0.42		4	N - 24977
cert3_4	overall	0.23	0.42	0		N = 24877
	between		0.42	0		n = 6777
	within		0.07	-0.52	0.98	T-bar = 3.6708
diploma	overall	0.10	0.30	0	1	N = 24877
	between		0.30	0	1	n = 6777
	within		0.04	-0.65	0.85	T-bar = 3.6708
-l		0.20	0.45			N 24077
degree	overall	0.28	0.45	0		N = 24877
	between		0.44	0		n = 6777
	within		0.04	-0.47	1.03	T-bar = 3.6708
postgrad	overall	0.12	0.33	0	1	N = 24877
	between		0.32	0	1	n = 6777
	within		0.05	-0.63	0.87	T-bar = 3.6708
		10.00				
loghhi~e	overall	10.30	0.71	4.65		N = 24860
	between		0.65	6.94		n = 6801
	within		0.32	6.10	13.43	T-bar = 3.65534
smokes	overall	0.21	0.41	0	1	N = 22914
	between		0.39	0	1	n = 6677
	within		0.14	-0.54	0.96	T-bar = 3.43178
froqueses	overall	0.50	0.50	0	4	N = 22985
freque~a	overall	0.50		-		
	between		0.40	0.25		n = 6682
	within		0.32	-0.25	1.25	T-bar = 3.43984
married	overall	0.62	0.49	0	1	N = 24979
	between		0.47	0	1	n = 6809
	within		0.13	-0.13	1.37	T-bar = 3.66853

Institute of Health&Society

Looking at variations within variables

What next?

- Because there is not much change in the education variables over the 4 years data we have we can not be confident of our findings on these variables from the fixed effect model.
- We can be sure that we have:
- 1) Endogeneity bias
- 2) Heteroskedacitiy
- 3) Serial Correlation

- Instrumental Variable Approach
- Find a third variable that is correlated with education but independent of BMI.
- Estimate a proxy fixed effect model that only takes the mean of time varying variables.

Steps 9 & 10

- Negative and significant effect found between BMI and having a degree which held across most model specifications.
- Difficult to draw policy conclusions with an association. Future research is needed to establish if there is a causal link between educational attainment and BMI.

Binary Response Regression Models

Institute of Health&Society

- Say you want to narrow the focus of your research question to the determinants of obesity only.
- You take your BMI data and construct a dummy variable for obesity using the WHO classification for obesity.

BMI between 18.5 kg/m²-24.9 kg/m² (healthy weight) BMI between 25 kg/m²-29.9 kg/m² (overweight) BMI 30kg/m2 or greater (obese)

Summary of Obesity Variable

Variable	Obs	Mean	Std. Dev.	Min	Max
obese	22270	.244185	.4296126	0	1

Binary Response Regression Models

$$obese_{it} = \begin{cases} 1 \text{ if } BMI \ge 30 \text{ kg} / m^2 \\ 0 \text{ otherwise} \end{cases}$$

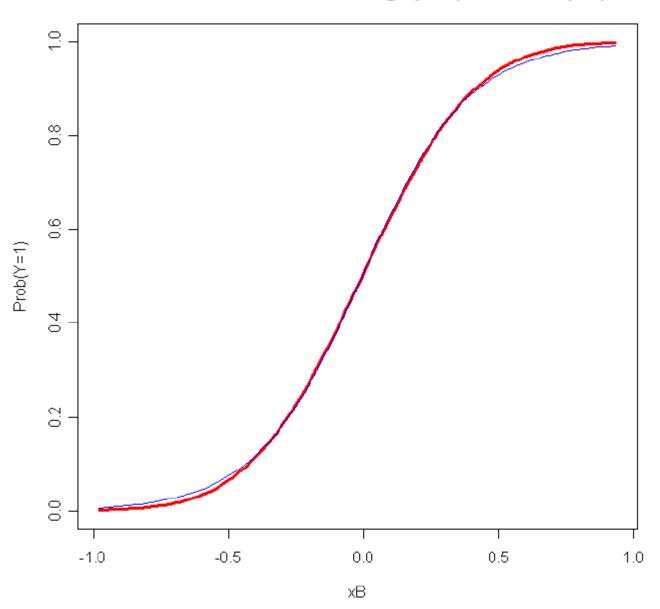
- $obese_{it}$ can take the values of one with the probability, π_i and zero with the probability $1-\pi_i$.
- The expected mean and variance of $obese_{it}$ will depend upon the underlying probability, π_i

$$E(Obese_i) = \mu_i = \pi_i$$

$$Var(Obese_i) = \sigma_i^2 = \pi_i(1 - \pi_i)$$

Binary Response Regression Models

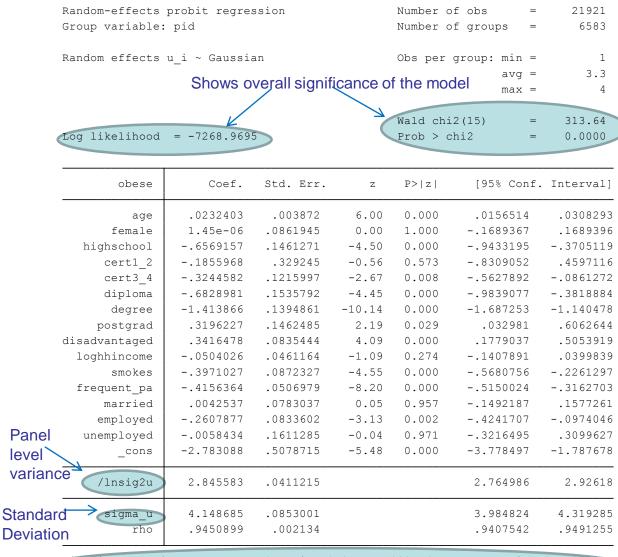
- We violate a main assumption of linear models that explanatory variables can affect the mean but the variance is constant.
- We also need to control for the fact that the dependent variable is truncated between 0 and 1.
- We need a different type of model: Two most popular options are:
- 1. Probit
- 2. Logit



Probit vs. Logit

- Probit assumes a cumulative standard normal distribution function
- Logit assumes a cumulative logistical function.
- No statistical theory for preferring one over the other
- Results should be similar in a large sample

Predicted Probabilities from Logit (blue) and Probit (red)


Probit vs. Logit

- The coefficients from the two models are not directly comparable because they are scaled differently
- Signs and significance will be identical
- The probabilities are virtually the same
- Logit model has fatter tails

Probit Example

Institute of Health&Society

Test of if should control for α_i (random effects)

Likelihood-ratio test of rho=0: chibar2(01) = 9004.64 Prob >= chibar2 = 0.000

Average Marginal Effects

Institute of Health&Society

 Estimated by calculating individual marginal effects-likelihood of moving from not obese to obese for a one unit change in the explanatory variable in question (estimated for all explanatory variables in the model:

($\partial obese_{it} / \partial X_{it}$)

- To get average marginal effects, individual marginal effects for all respondents in the sample are averaged.
- This shows the average likelihood of being obese for each explanatory variable

Average Marginal Effects

- For dummy variables, the average marginal effects are calculated by predicting the probability that the dummy variable in question is equal to one and the probability that the dummy variable is equal to zero. The difference between these two probabilities is then averaged across the whole sample.
- For continuous variables, the average marginal effects are estimated by taking the derivative of the predicted probability of the variable in question and averaging across the whole

Average Marginal Effects

Institute of Health&Society

Average marginal effects Model VCE : OIM

Expression : Linear prediction, predict()

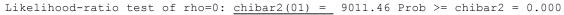
dy/dx w.r.t. : age _Ifemale_1 _Ihighschoo_1 _Icert1_2_1 _Icert3_4_1 _Idiploma_1 _Idegree_1
 __Ipostgrad_1 _Idisadvant_1 loghhincome _Ismokes_1 _Ifrequent__1 _Imarried_1
 __Iemployed_1 _Iunemploye_1

Number of obs

21921

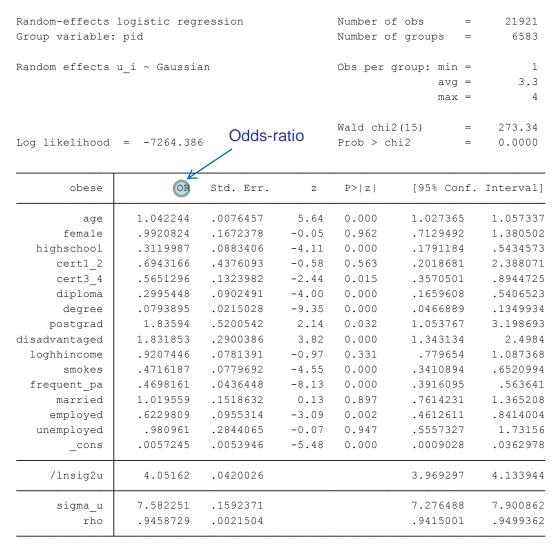
=

	Delta-method					
	dy/dx	Std. Err.	Z	₽> z	[95% Conf.	Interval]
age	.0232403	.003872	6.00	0.000	.0156514	.0308293
_Ifemale_1	1.45e-06	.0861945	0.00	1.000	1689367	.1689396
_Ihighschoo_1	6569157	.1461271	-4.50	0.000	9433195	3705119
_Icert1_2_1	1855968	.329245	-0.56	0.573	8309052	.4597116
Icert3 4 1	3244582	.1215997	-2.67	0.008	5627892	0861272
	6828981	.1535792	-4.45	0.000	9839077	3818884
Idegree_1	-1.413866	.1394861	-10.14	0.000	-1.687253	-1.140478
_Ipostgrad_1	.3196227	.1462485	2.19	0.029	.032981	.6062644
_Idisadvant_1	.3416478	.0835444	4.09	0.000	.1779037	.5053919
loghhincome	0504026	.0461164	-1.09	0.274	1407891	.0399839
_Ismokes_1	3971027	.0872327	-4.55	0.000	5680756	2261297
_Ifrequent1	4156364	.0506979	-8.20	0.000	5150024	3162703
_Imarried_1	.0042537	.0783037	0.05	0.957	1492187	.1577261
 	2607877	.0833602	-3.13	0.002	4241707	0974046
 Iunemploye_1	0058434	.1611285	-0.04	0.971	3216495	.3099627

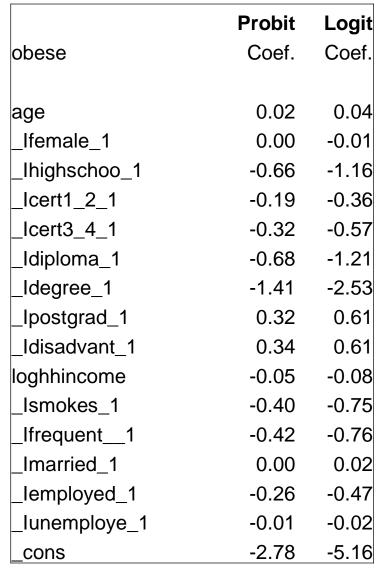

Problem with model. Marginal effects shouldn't be greater than 1. Most likely endogeneity problem.

Logit Example

Random effects u_i ~ Gaussian	Obs per group:	min =	1
		avg =	3.3
		max =	4
	Wald chi2(15)	=	273.34
Log likelihood = -7264.386	Prob > chi2	=	0.0000


obese	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
age	.0413757	.0073358	5.64	0.000	.0269977	.0557536
female	0079491	.1685725	-0.05	0.962	3383451	.3224469
highschool	-1.164756	.2831441	-4.11	0.000	-1.719708	6098041
cert1_2	3648273	.6302735	-0.58	0.563	-1.600141	.870486
cert3 4	5707002	.2342793	-2.44	0.015	-1.029879	1115211
diploma	-1.205491	.3012874	-4.00	0.000	-1.796004	6149789
degree	-2.533389	.2708517	-9.35	0.000	-3.064249	-2.002529
postgrad	.6075568	.2832631	2.14	0.032	.0523713	1.162742
disadvantaged	.6053279	.1583307	3.82	0.000	.2950054	.9156504
loghhincome	0825726	.0848651	-0.97	0.331	2489051	.0837599
smokes	7515844	.1653225	-4.55	0.000	-1.075611	4275582
frequent_pa	755414	.0928977	-8.13	0.000	9374901	5733378
married	.0193703	.1489499	0.13	0.897	2725661	.3113067
employed	4732393	.1533456	-3.09	0.002	7737911	1726876
unemployed	0192225	.2899264	-0.07	0.947	5874678	.5490227
_cons	-5.162994	.9423629	-5.48	0.000	-7.009992	-3.315997
/lnsig2u	4.05162	.0420026			3.969297	4.133944
sigma u	7.582251	.1592371			7.276488	7.900862
rho	.9458729	.0021504			.9415001	.9499362

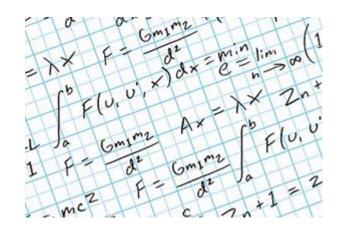
Logit Example (Odds ratio)



Institute of Health&Society

Likelihood-ratio test of rho=0: chibar2(01) = 9011.46 Prob >= chibar2 = 0.000

Comparing logit and probit coefficients



Institute of Health&Society

Exercise

