Beyond the Grossman's model. Lecture 3

Eleonora Fichera¹

¹Manchester Centre for Health Economics, University of Manchester

October 15, 2013

Outline

Overview

Recap on Grossman's model

An alternative to the Grossman's model

- The production of health as a stochastic process
- State-dependent production of health: short run
- Short term trade-off given good health
- Short term trade-off given bad health
- State-dependent production of health: long run
- Complementarity/substitutability in the production of health?

Recap on health

- Health is a capital stock that depreciates with time. It is both a production and a consumption good.
- Individuals choose health investments up to MU=MC
- Some predictions of the Grossman model have not been confirmed by empirical literature
- Main drawback: it is a deterministic model.

Conditional Health production functions

In short-run health status is a sequence of states (s, h):

- Assume 2 periods
- 4 possible states: *hh*, *hs*, *sh*, *ss*
- Markov process: probabilities remain constant over time

Transition and State Probabilities

	healthy in period 2	sick in period 2
healthy (h) in period $f 1$	$1-\phi_{hs}$	ϕ_{hs}
sick (s) in period 1	$1-\phi_{ss}$	ϕ_{ss}
$\pi_{h,2} = (1-\pi)$	$\pi_{h,1}(1-\phi_{hs})+\pi_{s,1}(1-\phi_{ss})$	
$\pi_{s,2} = \pi$		$\pi_{h,1}\phi_{hs} + \pi_{s,1}\phi_{ss}$
ϕ_{hs} : probability of transition from healthy to sick		
$\phi_{ m ss}$: probability of transition from sick to sick		
$\pi_{h,t}$: state probability of being healthy in period t		
$\pi_{s,t}$: state probability of being sick in period t		

Example (i)

- Probability of being healthy in period 2 is given by: $\pi_{h,2} = \pi_{h,1}(1-\phi_{hs}) + \pi_{s,1}(1-\phi_{ss})$
- Suppose initial health is known to the individual:
- If initially healthy $\Rightarrow \pi_{s,1} = 0$: Only way to influence health ϕ_{hs}
- If initially sick $\Rightarrow \pi_{h,1} = 0$: Only way to influence health ϕ_{ss}

Example (ii)

Two ways to influence transition probabilities:

- $\bullet\,$ Time spent in favour of health $(t')\Rightarrow$ only in initial healthy state
- Medical care $M \Rightarrow$ only in initial sick state
- Formally:

$$\pi_{h,2} = \begin{cases} \pi_{h,2}[\phi_{hs}(t',\ldots,)] & \text{if healthy in period 1} \\ \pi_{h,2}[\phi_{ss}(M,\ldots,)] & \text{if sick in period 1} \end{cases}$$

- Conditional health production function
- The model has implications for each health state in the short and long term

Short-run optimisation and willingness to pay for health

Willingness to pay (WP) (H,C)= $\frac{MU_C}{MU_H} \Rightarrow MRS_{HC}$ or slope of IC

- State-dependent production function & state-dependent U
- In general:

$$EU = \sum_{t=0}^{T} \beta^{t} [(1 - \pi_{t}) u_{h} [C_{h,t}, H_{t}] + \pi_{t} u_{s} [C_{s,t}, H_{t}]]$$

- $\beta < 1$ subjective rate of time preferences
- $u_h[C_{h,t}, h] > u_s[C_{s,t}, s]$

Example: 2 periods

• In 2 periods, $\beta = 1$:

• If sick in period 1:

 $EU = (1 - \pi_1)u_h[C_{h,1}, h] + \pi_1u_s[C_{s,1}, s] + (1 - \pi_2)u_h[C_{h,2}, h] + \pi_2u_s[C_{s,2}, s]$

- If initially healthy $\Rightarrow \pi_1 = 0$: Only decision variable C_{h1} (to simplify $C_{h,2} = C_{s,2} = C_2$)
- MWP: defined as WP to reduce *π*₂:

$$dEU = 0 = \frac{\partial u_h[C_{h,1}]}{\partial C_{h,1}} dC_{h,1} - \{u_h[C_2] - u_s[C_2]\} d\pi_2$$
$$- \frac{C_{h,1}}{d\pi_2}\Big|_{dE_h=0} = -\frac{u_h[C_2] - u_s[C_2]}{\frac{\partial u_h[C_{h,1}]}{\partial C_{h,1}}}$$

$$-\frac{C_{s,1}}{d\pi_2} = -\frac{u_h[C_2] - u_s[C_2]}{\frac{\partial u_s[C_{s,1}]}{\partial C_{s,1}}}$$

Implications

- MRS between C and π
- Numerator: MRS is ratio of utilities differences (or MU), the greater it is the greater MWP
- Denominator: the greater the loss in utility, the smaller the MWP
- MWP may be state-dependent $\Rightarrow MU_C$ is state dependent

State-dependent production process

- Individuals can influence health only through probabilities;
- Individuals' effort can only influence production in a state of good health; ۰
- Health status is not only the result of a production process but also the effect of a ۰ stochastic input factor

Consumption services produced: short run

In the healthy state, only self care (i.e. time in favour of health t') can have an impact on health:

$$\pi=\pi(t')$$

• Input of consumption and time (Becker, 1965):

$$C_h = C_h(X, t^C)$$

• Healthy individuals earn labour income (with wage exogenous to health) and finance purchase of consumption:

$$wt^W = cX_h$$

• Time available for consumption:

$$1 = t^{C} + t' + t^{W}$$

Production possibilities in illness state

• In the ill state, only medical care can have an impact on health:

$$\pi = \pi(M)$$

• Input of consumption and time are required to the production of consumption services (like in healthy case):

$$C_s = C_s(X, t^C)$$

• With social security income in the event of sickness dow not depend on working time:

$$\bar{Y} = cX + pM$$

• Time constraint comprises only time for consumption and medical services

$$1 = t^{C} + \mu M$$

State-dependent production process: good health

- If choosing lower t¹, choose a probability distribution containing unfavourable states with increased probability;
- Trade-off is a transformation curve in a $(C_h, 1 \pi)$ space;
- Shape of transformation curve is given by its slope, the Marginal Rate of Transformation (MRT):

$$\frac{dC_h}{d(1-\pi)} = \frac{\frac{\partial C_h}{\partial t^C}}{\frac{\partial \pi}{\partial t^I}} < 0$$

Short-term: good health

Short-term: good health (cntd.)

Implications of the model:

- Increase in the real wage rate($\frac{w}{c}$): no short-run effect, as increase in labour income compensates the increase of the opportunity cost of consumption;
- Technological change in the household $(\frac{\partial C_h}{\partial t^C})$: because it is a labour-saving measure, it increases the time spent on consumption, assuming that the productivity of self-care time does not change, the transformation curve moves from A_h to A'_h

State-dependent production process: bad health

• Shape of transformation curve is given by its slope, the Marginal Rate of Transformation (MRT):

$$\frac{dC_s}{d(1-\pi)} = \frac{\frac{\partial C_s}{\partial t^c}\mu}{\frac{\partial \pi}{\partial M}} + \frac{\frac{\partial C_s}{\partial X}\frac{p}{c}}{\frac{\partial \pi}{\partial M}} < 0$$

- Numerator 1: Utilisation of M requires time to be spent by the patient
- Numerator 2: Medical services and consumption compete for Income

Short-term: bad health

Short-term: bad health (cntd.)

Implications of the model:

- Technological change in the household: little effect on behaviour in the ill state;
- Technological change in medicine $(\frac{\partial \pi}{\partial M})$: flatter frontier with a shift from $A_s B_s$ to $A_s B'_s$ with new optimum Q_s^{**} ;
- Increased density of supply (μ): less time spent on medical services with new transformation curve $A_s^{''}B_s^{''}$;
- Extended coverage by health insurance $(\frac{p}{c})$: cheaper medical services, with additional income spent on consumption goods. New transformation curve $A_s^{''}B_s^{''}$.

State-dependent production process: long run

- T periods
- Current state "healthy": Trade-off average duration of a future phase of good health and consumption;
- Current state "sick": Trade-off average duration of a future phase of sickness and consumption.

State-dependent production process: good health

• Mean no. periods in good health:
$$T_h = \frac{1}{\pi}$$
;

• Time constraint:

$$T_h = t^C + t' + t^W$$

• Slope of transformation curve is given by its slope, the Marginal Rate of Transformation (MRT):

$$\frac{dC_{H}}{dT_{h}} = \frac{\frac{\partial C_{h}}{\partial t^{c}} \left[\frac{\partial T_{h}}{\partial \pi} \frac{\partial \pi}{\partial t^{\prime}} - 1 \right]}{\frac{\partial T_{h}}{\partial \pi} \frac{\partial \pi}{\partial t^{\prime}}} \gtrless 0$$

- Sign ambiguous and depends on $\frac{\partial T_h}{\partial \pi} \frac{\partial \pi}{\partial t'} \gtrless 1$
- It indicates returns to additional hour spent on health

Solution

• Critical value
$$\frac{\partial \pi}{\partial t^l}$$
 is given by:

$$\frac{dC_{h}}{dT_{h}} \gtrless 0 \Leftrightarrow \left|\frac{\partial \pi}{\partial t^{\prime}}\right| \gtrless \left|-\pi^{2}\right|$$

- For individual with healthy prospects (π is small), small value implying that t' and T_h may attain higher values before h becomes a consumption good
- Critical value corresponds to A_h

Long-term: good health

State-dependent production process: bad health

• Mean no. periods in bad health:
$$T_s = \frac{1}{\pi}$$
;

Time constraint:

$$T_s = t_s^C + \mu M$$

- Aim is to have shortest period of sickness as possible
- The Marginal Rate of Transformation (MRT):

$$\frac{dC_s}{dT_s} = -\frac{\frac{\partial C_s}{\partial t^c} \left[\frac{\partial T_s}{\partial \pi} \frac{\partial \pi}{\partial M} - \mu \right]}{\frac{\partial T_s}{\partial \pi} \frac{\partial \pi}{\partial M}} + \frac{\frac{\partial C}{\partial X} \frac{p}{c}}{\frac{\partial T_s}{\partial \pi} \frac{\partial \pi}{\partial M}} < 0$$

 Transformation curve is strictly decreasing implying that no investment, only M. But it costs time (μ) that could have been spent in consumption

Complementarity/substitutability in the state-dependent production of health?

- Theory of firm in production inputs
- Solution to decrease health expenditure?
- 2 ways: a) reduce price of healthy behaviours ; b) increase their productivity ۰

Substitutability in the healthy state

- If in initial healthy state, t' increases π falls
- Good health duration increase and utilisation of medical care defers. But:
- Life expectancy increases and total medical care during entire life cycle might NOT decrease

Complementarity in the sick state

- If in initial sick state, t' has no effect
- But increased M, reduces duration of sick period allowing t' to increase
- Complementarity between t' and M

- Health is not deterministic
- Individuals can only affect the probability of transition or duration of health (sick) time
- But even then the effect of inputs on health is unknown
- We have seen the effects of inputs in a conditional state-dependent production function
- We considerered long and short run effects

References

• Zweifel et al. (2009) chapter 3: pp. 89-117

