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1. Modifications, recent generalizations, open problems 

Theory we have learned so far is nice, but there are many aspects not dealt with 

• Transaction costs (fixed and proportional transaction costs) 
 ⇒ Problem: hard to solve, curse of dimensionality  

• Investment with bonds, .. (i.e. stochastic interest rates): 
 ⇒ Problem: Additional interest rate risk, counter examples  

• Investment with derivatives 
 ⇒ Problem: Non-linear portfolios  

• Investment with defaultable securities 
 ⇒ Problem: Additional default risk   

• Investment with crashes  
 ⇒ Problem: No full probabilistic information, worst-case control 

• ....... 



 
2. Optimal investment with derivatives 
 
Aims and Results  

Motivation :  

Change of roles in option trading 
- Option portfolios for hedging purposes  → Control of the "Greeks” 
- Option portfolios for speculative reasons   →               ?  
 
Suggestion : 
Maximise expected utility of terminal wealth of option portfolio : 
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Goal :   Determination of optimal option portfolios   
 
 



 

Theorem (K., Trautmann (1998)) 

Given the “Delta matrix”  ψ(t) = (ψij(t)),  i, j = 1, ..., n,  with 

 ψij(t) := ))(),...,(,( 1
)( tPtPtf np

i
j ,     t∈[0, T) 

is regular, the option portfolio problem (O) has the following explicit solution: 

a) The optimal terminal wealth B* coincides with the optimal terminal wealth of the 
corresponding stock portfolio problem.  

b) Let ξ(t) be the optimal trading strategy of the correponding stock portfolio problem. 
Then, the optimal trading strategy ϕ(t) for the option portfolio problem is given by  

 ϕ (t) = (ψT(t))-1ξ (t),     

 ϕ0(t) = ( )∑− =
n
i ii tPttX 1 )()()( ϕ  / P0(t), 

 
where ϕ (t), ξ (t) are the last n components of ϕ(t) and ξ(t). 
 
 
 



 
Example 1. “Logarithmic utility” 
 
U(x) = ln(x), n =1 
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Computational effort 

-  Comparable to stock portfolio problem 
 
 
 

 
Specific example: 
European call  option on the stock with  
 r = 0, b = 0.05, σ = 0.25, T = 1, t = 0, K = 100 
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Fig. 1: π* and πopt(0) as functions of initial 
stock price 
 



3. Optimal investment with defaultable securities 

Merton model:  firm’s value  follows a geometric Brownian motion 

 dV = aV dt + σ VdW(t)  

- company Z  has issued 1 share and a zero coupon bond with notional B 

Result:  

-   at time T  the value of the S shares is given as   ( )( )+− BTV  

-   at time T  the value B(T) of all zero bonds is given as  min ( )( )BTV ,  

i.e. the value of the shares and that of the corporate bond can be got as the prices of call 
options or as (B − ) put options on the firm’s value with strike B, respectively. 

 

Black-Scholes-Formula ⇒⇒⇒⇒ 
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Solution method:  
Solve the portfolio problem as if the firm value would be tradable ! 
 
 
Proposition (K., Kraft 2001) 

If an investor is allowed to invest into the money market account and in the bond issued by the 
company then his optimal portfolio process is given by  
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Remark:  

- Optimal final wealth is the same as if we could invest in the firm value  

- Invested money in the company’s bond exceeds that which would be invested in the firm value 
 
 



4. Optimal investment with crashes and unhedgeable risks: 
 
Alternative crash modelling:  

1. Hua & Wilmott (1997): “Number and size of crashes in a given time intervall are bounded” ⇒ 
no probabilistic assumptions on height, number and times of occurence of crashes.       .   

2. K. & Wilmott (2001): “Determine worst-case bounds for the performance of optimal investment”.  
 
For simplicity : One bond, one stock, at most one crash in [0, T] with a maximal height of  k* < 1. 
Security prices (in “normal times”): 

 ( ) ( ) dtrtPtdP 00 = ,  ( ) 100 =P ,   “bond” 

 ( ) ( ) ( )( )tdWdtbtPtdP σ+= 11  ,  ( ) pP =01 ,   “stock” 

At crash time: stock price falls by a factor of  k ∈ [0, k*] 

Consequence:  
The wealth process ( )tX π  at crash time satisfies:  

 ( ) ( )( ) ( ) ( ) ( )−+−−=− tXttXttX πππ ππ1   

 ⇒  ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )tXkttXktXttXt ππππ πππ =−−=−−+−− 111  
 



 
 
Thus: 

Following the portfolio process ( ).π  if a crash of size k happens at time t leads to a final wealth of  

( ) ( )( ) ( )TXktTX ππ π ~
1−=  

if ( ).~πX  denotes the wealth process in the model without any crash. 
 
Hence: 

• “high” values of ( ).π  lead to a high final wealth if no crash occurs at all, but to a high loss at the 
crash time  

• “low” values of ( ).π  lead to a low final wealth if no crash occurs at all, but to a small loss (or 
even no loss at all !!) at the crash time 

 
Moral: 
We have two competing aspects (“Return and insurance”) for two different scenarios (“Crash or 
not”) and are therefore faced with a balance problem between risk and return. 



  

Aim:  Find the best uniform worst-case bound, i.e. solve 
 

 (WP) 
( ) ( )
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E U X Tπ

≤τ≤ ≤κ≤π ∈
 

 

where the final wealth satisfies ( ) ( )( ) ( )TXktTX ππ π ~
1−=  in the case of a crash of size k at time t.  

 

Assumption:           b > r  

Note: To avoid bankruptcy we require  ( ) *kt 1<π  
 

 Important Remarks: (!) 

a) We do not (!) compare two different strategies scenario-wise. We look separately at the worst-
case for both strategies which then yields the worst-case bound. Typically two different strategies 
have two different worst-case scenarios   

b) As we have rb > , we do not have to consider portfolio processes ( )tπ  that can attain negative 
values as the log-utility function is increasing in x.  
 



 
Two extreme strategies (in the log-utility case): 
 
i) ( ) :0≡tπ  “Playing safe” 
⇒ worst-case scenario: no crash (!) , leading to the following worst-case bound of 

( )( )( ) ( ) rTxlnTXlnEWCB +== 0
0  

ii) ( ) ::*
2σ

ππ rb
t

−=≡  “Optimal investment in the crash-free world ” 

⇒ worst-case scenario: a crash of maximum size k* (at an arbitrary time instant !) , leading to the 
following worst-case bound of 
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Insights: 

•••• it depends on time to maturity which one of the above strategies is better  

•••• a constant portfolio process cannot be the optimal one  

•••• strategy i) takes too few risk to be good if no crash occurs while strategy ii) is too risky to 
perform well if a crash occurs ⇒ the optimal strategy should balance this out ! 



Theorem 1 “Dynamic programming principle”  

If U(x) and ( )0 ,v t x  (“value function without crash”) are strictly increasing in  x  then we have 
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Theorem 2 “Dynamic programming equation”  

Let the assumptions of Theorem 1 be satisfied, let ( )x,tv0  be strictly concave in x, and let there 

exist a continuously differentiable (with respect to time) solution ( )ˆ tπ  of 
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 is a concave fuction in (x, y) for all t∈[0, T). 

(B) ( )( )( ) ( )( )( )ˆ0, 0,ˆ ˆ, ,x xE v t X t E v t X tπ π≤ɶ ɶ     and   ( )( ) ( )0, ˆxE t tπ ≥ π   

 for some t∈[0, T),π∈A(x)  ⇒ ( ) ( )( )( )( ) ( )( )( )ˆ0, 0,
0 ˆ, 1 * ,x xE v t X t t k E v t X tπ π− π ≤ɶ ɶ . 

⇒ ( )ˆ tπ  is the optimal portfolio before the crash, ( )* tπ  is the optimal one afterwards 



 

Corollary 3 “Optimal investment in the presence of a crash with log-utility”  

There exists a strategy ( )ˆ .π  such that the corresponding expected log-utility after an immediate 

crash equals the expected log-utility given no crash occurs at all. It is given as the unique solution 

( ) )1ˆ . 0, *k
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( ) 0=Tπ . 

Further, this strategy yields the highest worst-case bound for our problem (WP).  
In particular, this bound is active at each future time point (“uniformly optimal balancing”).  

After the crash has happened the optimal strategy is given by 

 ( ) 2
* :

b r
t

−π ≡ π =
σ

 . 

 

  



 

Example 1:  Logarithmic utility 
 

Optimal Portfolios with a Crash
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Figure 2: ( )ˆ tπ  as a function of time for the data  b = 0.2, r = 0.05, σ = 0.4, k* = 0.2, T = 1.  



Example 2:  Logarithmic utility 

Same data as before but with a time horizon of  T=10: 

Interpretation : 

• The longer the time to the trading horizon the more attractive it is to invest in the stock, and even 
a "moderate crash" is no real threat.  

• If the final time is near it is good to save the gains (i.e. reduce stock investment) as then there is 
not enough time to compensate the effect of a crash by an optimal stock investment afterwards.  
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Generalizations:  
- Worst-case investment with insurance risk (K. 2004)  

- More than one crash, multiple assets (K., Wilmott (2001) 

- Changing market coefficients after a crash (K., Menkens (2004),(2005)) 

- General utility function and Bellman systems (K., Steffensen (2008)) 

- Crash hedging and worst-case control (Menkens (2005)) 

 

Open problems 

- Use of options 

- Application to the control of social or technical systems with possible catastrophes 
  

 



 

 
5. Optimal investment with  Transaction Costs  
 
Very often: Optimal portfolio processes are constant ones. However, this requires trading at each 
time instant ! 

In the presence of transaction costs ⇒ (immediate) ruin  ! 
 
Necessary: Consider different class of trading strategies  

⇒   

1.) Davis/Norman (1990) “Proportional t.c.” :  Singular stochastic control   

2.) Eastham/Hastings (1988), Korn (1998) “Fixed and prop. t.c.”:  Impulse control  

3.) Morton/Pliska (1995)  “Non-sensical t.c.”:  Optimal stopping 
 
Main problem:  Practical realization ! 



The Morton-Pliska Approach (1995) 

Assumptions:       
- Each transaction costs a fixed percentage ε  of the investor’s wealth  
- Find the portfolio process that maximizes the long term growth rate of wealth, i.e. solve 

 ( )( )( )TXlnE
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limmax
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π
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Solution:       

- Morton and Pliska (1995): A stationary optimal control exists (characterized by a set of 
variational inequalities) “Let the portfolio process evolve freely inside a fixed region E, transact 
back to a fixed point ππππ* inside E”  
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The underlying mathematical problem: 
 
With the definition of the operator A via  
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the value function of the Morton-Pliska problem is given as the (smallest) solution of the 
variational inequalities 

           ( )( )Af R rπ ≤ −  

                           ( ) ( )1 1f ln 'π π≥− −   

  ( )( )( ) ( ) ( )( )1 1 0Af R r f ln 'π π π− + + − =   

 

on the unit simplex (with 1
2R r ' 'π σσ π= + ). 



A practical advantage of the Morton-Pliska approach:  

Possibility to solve multi-asset problems 
=> 
Atkinson and Wilmott (1995):  
Solve the problem via asymptotic expansion 

 ( ) ( ) ( )
1

1: t ' b rπ π σσ −
= = −ɶ ɶ     “Merton point ”         

 
1

4Cπ ε+ɶ     “continuation region E ” 

 ( )
1
21

2 2r* r ' ' Tr HMπ σσ π ε= + −  “asymptotic growth rate ” 

with { }1≤∈= πππ M'IR:C n  and M the unique positive solution of the matrix equation 

(ME)  ( )8 4MHM Tr HM M 'σσ+ = ,      

with  ( ) ( ) 1ij i j i jH e ' ' e , i, j ,..,nπ π π σσ π= − − =ɶ ɶ ɶ ɶ .  

However:  
The structure of the transaction costs (always pay a fraction of total wealth independent of the 
volume of the transaction) is still non-sensical ! 



Proposition “ A Second Look at the Morton-Pliska-Approach”  (K. (2004)) 

Let M, C be as above, 0 < k < 1 determine the real world prop. transaction costs. Then we have:   

i) Let y*∈IR 
n
 solve  

1
111

ymaxymax
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i
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Then, the actual transaction costs caused by a rebalancing of the holdings when following the 
Morton-Pliska strategy satisfy  

 ( ) ( ) ( ) ( )1 4 1 4
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1

* k
k :

k
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In particular, for 34 /k
~

* =ε  the actual transaction costs (in terms of percentage of the traded 
volume) are always smaller than the transaction costs in the Morton-Pliska model. 
ii) The actually achieved (asymptotical) growth rate for ε =ε *  is bounded below by  

 ( )1
2 2r* r ' ' *Tr HMπ σσ π ε= + −ɶ ɶ  = ( )2R *Tr HMε−ɶ . 

In particular, stock investment under proportional transaction costs only yields a better 
performance (in terms of growth rate) than pure bond investment if we have  
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Consequence: 

A practitioner’s guide to applying the Morton-Pliska approach in reality: 

 1. determine M out of the market coefficients by solving the matrix equation (ME) 

 2. check if k is sufficiently small such that following the Morton-Pliska strategy yields a higher 
growth rate than pure bond investment 

 3. if the above check is positive then follow the Morton-Pliska strategy with ε =ε * as defined in 
Proposition i)  

 

Example: 1stock, 1 bond, BS-market with  

r = 0.05, b= 0.08, σ = 0.3 ⇒  3/1=π ,  0 055R .=ɶ  

 

k 0.001 0.01 0.05 0.1 

Growth rate 0.0549 0.0545 0.0535 0.0526 

Interval length (1/2) 0.084 0.182 0.230 0.410 

 

Break-even transaction costs: k= 0.245146 (however, asymptotic expansion is doubtful !) 



Example 2:  Two stocks, one bond in the BS-model with 

r = 0.05, b1= 0.08, σ11 = 0.3, b2= 0.08,  σ22 = 0.3, σ12 = 0 ⇒  
1 3

1 3

/

/
π
 =   

, 0 06R .=  

   

k 0.001 0.01 0.5 0.1 

Growth rate 0.0598 0.0589 0.0568 0.0547 
“Interval length” 0.16 0.35 0.62 0.79 

Break-even transaction costs: k*= 0.223655 



 

Advantage for practical use: 

� We obtained a reasonable strategy 

� We obtained upper bounds for the transaction costs 

� We obtained lower bounds for the performance 

� We only have to solve a quadratic matrix equation 

⇒⇒⇒⇒  We have solved a practical problem via adapting an existing solution approach   
 

Open questions:  

� Modification for including a fixed cost component in the real world ?. 

� Modification allowing for power functions ( ) 01
1 ≠<= γγ
γ

γ ,,xxf  ? 

� Does a higher order expansion increase the accuracy ? How about the exact solution ? 

� How good is the lower bound for the actual growth rate ? 
 



 
6. Optimal investment with  Stochastic Interest Rates 
 
So far:  
Bonds are treated just as bank accounts 

⇒ constant interest rates are totally inappropriate over a long time horizon 
 

Traditional measures are focused on static measuring of risk and return: 

yield ≅ average return 

duration ≅ role as delta in option trading 

convexity ≅ role as gamma in option trading 

 

Why not applying modern dynamic  methods ? 

⇒ set up a bond portfolio problem 

⇒ maximize expected utility  (K., Kraft (2000), Kraft (2002), …) 
 



Solving a Bond Portfolio Problem via Stochastic Control 
 
Model assumptions and price equations: 

 ( )tdr   = ( ) ( )tbdWdtta +     “short rate”      

 ( )tdB   = ( ) ( )dttrtB  “money market account” 
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, 1  “T1-bond” 

(think of Ho-Lee or Vasicek model as examples, more complicated examples are possible !) 

⇒ “wealth equation”   
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⇒ Corresponding HJB-Equation 
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Step 1: “Solve the maximisation problem in the HJB-Equation”    

  ( )* tπ  =  
( )
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( )

, , ,, ,

, , , ,
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      “classical part” “ correction term” 

 

Step 2: “Substitute the maxima into the HJB-Equation and solve the resulting pde” 

…..some really complicated equation… . 
 



Example: “Power utility and Ho-Lee-model” 

( )xU  =    γx ,  10 << γ  

( )tdr   = ( ) ( )( ) ( )tbdWdttbta ++ ζ~      for some continuous, deterministic function ( )tζ   

( )1,TtdP  = ( ) ( ) ( ) ( )( ) ( ) ( )[ ]tdWtTbdttTbttrTtP −−−− 111, ζ  

Important:  For portfolio optimization one has to use the dynamics under the subjective measure 
P, not (!) under the equivalent martingale measure Q  !!! 

⇒ 

Solution of the portfolio problem can be given explicitly as 

 ( ), ,v t x r   =  ( ) ( )( ) ( )( )1
1 11

expx H t H T T t rγ
−γ − + γ −   

     π*( t) = 
( ) ( )

( )1
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t b T t

b T t

ζ + γ −
− γ − −

 = 
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1

1 1

t T t

b T t T t

ζ γ −− −
− γ − − γ −

 

Correction term results in an initially “smaller” risky posi tion, but vanishes asymptotically ! 



Counterexample: 
 
Example: “Power utility and Dothan model” 

( )xU  =      γx ,      10 << γ  

( )tdr   =  ( ) ( )[ ]tdWdtbtr σ+       

⇒   ( )( )( )0E U X T = +∞  

 

 

Generalisations: 

- Mixed stock and bond problems 

- Problems including bond and stock options  

- …. 



 
7. More Problems  

 

- Optimal investment with constraints  
o on the final wealth  (see K. (1997), …) 
o on the portfolio process (see Cvitanic and Karatzas (1993),  Kramkov and 

Schachermayer (1998), …) 
o on risk measures (Karatzas (1999), Uryasev e.a. (1999), Sass, Wunderlich (2005),…) 

- Optimal portfolios in non-diffusion settings (Benth e.a. (…), Kallsen (..)) 

- Non-utility based approaches 

o Universal portfolios (Cover (1995), Jamshidian (1995), …) 

o Approximation of the growth-optimal portfolio (Platen (2006), …) 

o Value preserving portfolios (Hellwig (1987), Wiesemann (1995), K. (1997), ..) 

- Estimation problems for the market coefficients 

 

 ⇒⇒⇒⇒  Still a lot to do ! 
 


