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1. Modifications, recent generalizations, open prdbms

Theory we have learned so far is nice, but thezeraany aspects not dealt with

« Transaction costgfixed and proportional transaction costs)
— Problem: hard to solvepurse of dimensionality

* Investment with bonds, .. (i.etochastic interest ratgs
= Problem:Additional interest rate riskcounter examples

* Investment witlderivatives
= Problem:Non-linear portfolios

 |nvestment witidefaultable securities
— Problem:Additional default risk

e Investment witlcrashes
= Problem: No full probabilistic informationyorst-case control



2. Optimal investment with derivatives

Aims and Results
Motivation :

Change of roles in option trading
- Option portfolios for hedging purposes - Control of the "Greeks”

- Option portfolios for speculative reasons, ?

Suggestion :

Maximise expected utility of terminal wealth of option portfalio
may E(U(X(T)))

X(t) = 9o () Po®) + X0, (1) O (t, R t)..R.(t)) | “Wealth process’

Goal : Determination of optimal option portfolios



Theorem (K., Trautmann (1998))
Given the “Delta matrix”¢(t) = (¢(t)), i,j=1, ..., n, with

gt = £V . R),..R (1), tO[0,T)
IS regular, the option portfolio problem (O) has fhllowing explicit solution:

a) The optimal terminal wealtB* coincideswith the optimal terminal wealth of the
corresponding stock portfolio problem.

b) Let &t) be the optimal trading strategy of the correpongdtock portfolio problem.
Then, the optimal trading strateggt) for the option portfolio problem is given by

() = (JTO)LE 1),
o) = (X(®) - L R (L)) / Po(t),

whereg (t), € (t) are the last n componentsgif) and &(t).




Example 1.“Logarithmic utility

U(X) = In(xX), n =1
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Computational effort

- Comparable to stock portfolio problem

Specific example:

European call option on the stock with
r=0,b=0.050=0.25T=1,t=0,K=100
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Fig. 1: t* and mippt(0) as functions of initial
stock price



3. Optimal investment with defaultable securities

Merton model: firm’s value follows a geometric Brownian motion
dV=aVvdt + o VdW()

- companyZ has issued 1 share and a zero coupon bond with noBonal

Result:

- attimeT the value of th&shares is given adV(T)-B)"
- at timeT the value3(T) of all zero bonds is given asin(V(T), B)

l.e. the value of the shares and that of the catpdyond can be got as the prices of call
options or asi — ) put options on the firm’s value with stril respectively.

Black-Scholes-Formula=

B )() Be"(T- t)CD(dZ(t)) +V (t)P(-d,(t)) Corporate bond price

In( %j +r+10 )(T—t

\/ﬁ dz(t) =

with dy(t) d,(t)-oVT -t



Solution method:
Solve the portfolio problem as if the firm value would be tradable

Proposition (K., Kraft 2001)

If an investor is allowed to invest into the money market accauhin the bond issued by tf

company then his optimal portfolio process is given by

- a—r B(t) or Nl
w)=] ¢(—d1(tz))v<>’ for U (x) =In(x)
a-r B(t L

o2-y) SOV U(x)= ¥ x¥

Remark:
- Optimal final wealth is the same as if we could inveghe firm value

- Invested money in the company’s bond exceeds that which would [steidwe the firm value



4. Optimal investment with crashes and unhedgeablesks:

Alternative crash modelling:

1. Hua & Wilmott (1997): “Number and size of crashes in a giveer titervall are bounded=
no probabilistic assumptions on height, number and times of occurencesloésra

2. K. & Wilmott (2001): “Determine worst-case bounds for the perforce of optimal investment”.

For simplicity : One bond, one stock, at most one crash iit][&ith a maximal height ok* < 1.
Security prices (infflormal times”):

dR,(t) = Py(t)r dt, P, (0)=1, “bond”
dR(t) = R(t)(bdt + o dwi(t)) , P.(0)=p, “stock”
At crash time: stock price falls by a factor dt [ [0, k*]

Consequence:
The wealth procesX " (t) at crash time satisfies:

X" (t =)= (L= 7(t) X" (t =)+ 7{t) X " (t -)
= (1=7(t) X" (t-)+ ()X " (t=)a-k) = X" (t=)a-7(t]k) = X" (t)



Thus:
Following the portfolio process(.) if a crash of siz& happens at time t leads to a final wealth of
X"(T)= - rt)k)X " (T)

it X”() denotes the wealth process in the model without any crash.

Hence:

« “high” values of7(.) lead to a high final wealth if no crash occurs at all, buthimh loss at the
crash time

« “low” values of 71(.) lead to a low final wealth if no crash occurs at all, but small loss (or
even no loss at all !!) at the crash time

Moral:
We have two competing aspects (“Return and insurance”) for tiereht scenarios (“Crash or
not”) andaretherefordaced with abalance problem between risk and return



Aim: Find the best uniforrworst-case boundi.e. solve

(WP) sup inf _ E(U(x™(T)))

T[(.)DA( x) 0<t<T,0<k<k*

where the final wealth satisfie$” (T) = (1L- 7z(t)k)X ”(T) in the case of a crash of size k at time t.
Assumption: b>r

Note: To avoid bankruptcy we requirer(t) < %*

Important Remarks: (!)

a) We donot (!) compare two different strategiesenario-wise We look separately at the worst-
case for both strategies which then yields the worst-case boypidally two different strategies
have two different worst-case scenarios

b) As we haveb > r, we do not have to consider portfolio processftg that can attain negative
values as the log-utility function is increasing in X.



Two extreme strategies (in the log-utility case):

i) 71(t) =0: “Playing safe”
— worst-case scenario: no crash (!) , leading to the followimigtacase bound of

WCB, = E(In(X°(T))) = In(x) + rT
i) 7(t) = = _r_ “Optimal investment in the crash-free world ”
o°

— worst-case scenario: a crash of maximum size tkarfaarbitrary time instant !) , leading to the
following worst-case bound of

WCB, = E(n(X™ (1)) = In(x)+rT + % (b= T +In(1- 77+ k*)

Insights:
e it depends on time to maturity which one of theabsirategies is better
e a constant portfolio processnnot be the optimal one

e strategy i) takes too few risk to be good if nasbraccurs while strategy ii) is too risky to
perform well if a crash occues the optimal strategy should balance this out !



Theorem 1“Dynamic programming principle”
If U(X) andyv, (t, x) (“value function without crash”) are strictly increasingxnthen we have

w(t)= sup - inf E(w (s X(§(+n( 3 1)

T[(.)D (t,x) t<s<T

Theorem 2“Dynamic programming equation”
Let the assumptions of Theorem 1 be satisfiedy]@tx) be strictly concave i, and let there
exist a continuously differentiable (with respect to timelitsoh ﬁ(t) of

ol 0 o) 0), R0 (), XD ke=0,7(T) =0

Assume further that we have:
(A fxyt):=(v) (t, x)(( y—1Y( t))( b— r)) x+ %(vp),. (t, x)crz( Yo = 1Y( t)z) X
IS a concave fuction irx(y) for all tLI[O, T).
8) E**(9(t, X"(1)) < E(Y t X())) and E*(n(t))=(t)
for somet0[0, T),70A() = E** (v, (t X*(§)(1-n(1) k*))) = E(( 1 3¢(})).

= ﬁ(t) is the optimal portfolideforethe crashjt* (t) IS the optimal one afterwards



Corollary 3 “Optimal investment in the presence of a crash with log-ulity”

There exists a strategﬁl(.) such that the corresponding expected log-utility after an imneediat
crash equals the expected log-utility given no crash occurs #Htialgiven as the unique solution

fi(.) O [O,%*) of the differential equation

m(t) = k—l*(l‘”(t) k*)(”(t)(b_ )l %(u%rﬂ
n(T)=0.

Further, this strategy yields théeghest worst-case boundor our problem (WP).
In particular, this bound is active at each future time point (“amifip optimal balancing”).

After the crash has happened the optimal strategy is given by
b-r

2

n(t) == .




Example 1: Logarithmic utility

Optimal Portfolios with a Crash

- - p*
e Crash_pi
— = pi_tilde

Figure 2: ﬁ(t) as a function of time for the data= 0.2,r = 0.05,0=04,k*=0.2,T = 1.



Example 2: Logarithmic utility
Same datas before buwvith a time horizon ofT=10:

Optimal Portfolios with a Crash

0,9 -
08 b= e e et e e e e e — e — e — -
0,7 -
0,6 1 e rash_pi
05 | — = pi_tilde
0,4 -
0,3
0,2
0,1

- - p*

Interpretation

* The longer the time to the trading horizon the more attractigdatinvest in the stock, and even
a "moderate crash" is no real threat.

o If the final time is near it is good to save the gains (educe stock investment) as then there is
not enough time to compensate the effect of a crash by an optonklinvestment afterwards.



Generalizations:

- Worst-case investment with insurance risk (K. 2004)
More than one crash, multiple assets (K., Wilma&Q1)
Changing market coefficients after a crash (K., kgrs (2004),(2005))
General utility function and Bellman systems (Kef&nsen (2008))
Crash hedging and worst-case control (Menkens (2005

Open problems
- Use of options
- Application to the control of social or technicgstems with possible catastrophes



5. Optimal investment with Transaction Costs

Very often: Optimal portfolio processes a@nstant ones. However, this requires tradismgeach
time instant !

In the presence of transaction costgimmediate) ruin !

Necessary:Consider different class of trading strategies

=

1.) Davis/Norman (1990) “Proportional t.c.” : Singular stochastic control
2.) Eastham/Hastings (1988), Korn (1998) “Fixed and prop. t.clmpulse control

3.) Morton/Pliska (1995) “Non-sensical t.c.”: Optimal stopping

Main problem: Practical realization !



The Morton-Pliska Approach (1995)

Assumptions:
- Each transaction costs a fixed percentagd the investor’s wealth
- Find the portfolio process that maximizes the long term groatéhof wealth, i.e. solve

naxim L elof )
Solution:

- Morton and Pliska (1995): A stationary optimal control existsracterized by a set of
variational inequalities)L®et the portfolio process evolve freely inside a fixed regiriransact
back to a fixed point# inside E’

T,
1

A




The underlying mathematical problem:

With the definition of the operator A via

%Zhj )T (@ n)oo(q: n) Zhi T (¢ —1')(b— rl—o0'm)

,j=1

the value function of the Morton-Pliska problem is given as thal(sst) solution of the
variational inequalities

(Af)(T) < R—r
f(1)>—In(1-1'm)
((Af)()— R+ r)( f(T)+ In(1—1'm)) = C

on the unit simplex (wittR= r+ ¥ 1 0o’ ).



A practical advantage of the Morton-Pliska approach:

Possibility to solve multi-asset problems

=>

Atkinson and Wilmott (1995):

Solve the problem via asymptotic expansion

fl:=fi(t) = (oc’ )_1(b —rl) “Merton point”
T+ 8%C “continuation region E”
* =r +%T’[ 00 Ti— ZS%I'r (HM ) “asymptotic growth rate”

with C Z:{ITD IR“\n‘ Mrr< 1} andM the unique positive solution of the matrix equation

(ME) 8MHM + 4Tr(HM )M = oc',
with Hy =77 (¢ —70) '00’'(g — 1), i,j=1,..r.
However:

The structure of the transaction costisvays pay a fraction of total wealth independent of the
volume of the transactior) is still non-sensical !



Proposition “A Second Look at the Morton-Pliska-ApproatiK. (2004))

Let M, C be as above, O k< 1 determine thezal world prop. transaction costs. Then we have|

) Lety*DIR " solve max Sy = max |yl
yUR :yMy=1 i=1 yUIR "y My=1

Then, theactual transaction costsaused by a rebalancing of the holdings when following the

Morton-Pliska strategy satisfy

* ~ * k
X (t=)— X ()< Ke” 4| yH, X()=:ke¥ *X(1). K =
In particular, fore* = k4’3 the actual transaction costs (in terms of percentage tfithed
volume) arealways smalletthan the transaction costs in the Morton-Pliska model.

i) The actually achievedasymptotical) growth rate fa=<c* is bounded belovby

r* =r + Y%7 00 fi—2JeTr HM ) = R—2Je*Tr(HM).

In particular, stock investment under proportional transaction oobtg/ields a better

performance (in terms of growth rate) than pure bond investmeat tikawe
3/ 4
*
My, -

117t oo' 1t

k< 4Tr(HM)




Conseguence:
A practitioner’s guide to applying the Morton-Pliskapproach in reality:

1. determindV out of the market coefficients by solving the matrix equaiMi)

2. check ifk is sufficiently small such that following the Morton-Pliskeastgy yields a higher
growth rate than pure bond investment

3. if the above check is positive then follow the Morton-Pliskaesiyatvith € = * as defined in
Proposition 1)

Example: 1stock, 1 bond, BS-market with

~

r=0.05 b=0.08=0.3= n=1/3, R=0.05%

K 0.001 0.01 0.05 0.1
Growth rate 0.0549 0.0545 0.0535 0.0526
Interval length 1/2) 0.084 0.182 0.230 0.410

Break-even transaction costsk= 0.245146 (however, asymptotic expansion is doubtful !)



Example 2: Two stocks, one bond in the BS-model with

1/3] —
r=0.05, h=0.08,0,;, =0.3, =0.08, 0,,=0.3,01,=0= TI= ] R=0.06
1/ 3
T
1
|
Kk 0.001 0.01 0.5 0.1
Growth rate 0.0598 0.0589 0.0568 0.0547
“Interval length” 0.16 0.35 0.62 0.79

Break-even transaction costsk*= 0.223655




Advantage for practical use:

» \We obtained a reasonable strategy
= We obtained upper bounds for the transaction costs
= \We obtained lower bounds for the performance

= We only have to solve a quadratic matrix equation

= We have solved a practical problem via adapting an existing solotr approach

Open questions:
= Modification for including dixed cost componenn the real world ?.

= Modification allowing for power functiong (x) = 1xV, y<ly#0?
14

» Does a higher order expansion increase the accuracy ? Howtladexact solution ?

= How good is the lower bound for the actual growth rate ?



6. Optimal investment with Stochastic Interest Rads

So far:
Bonds are treated just as bank accounts

— constant interest rates are totally inappropieaiEr a long time horizon

Traditional measuresare focused ostatic measuring of risk and return:
yield [1 average return

duration [0 role as delta in option trading

convexity [0 role as gamma in option trading

Why not applying moderdynamic methods ?
— set up a bond portfolio problem
= maximize expected utility (K., Kraft (2000), KtgR002), ...)



Solving a Bond Portfolio Problem via Stochastic Camol

Model assumptions and price equations:

dr(t) = a(t)dt+bdwl(t) “short rate”
dB(t) = B(t)r (t)_dt ~ “money market account
dP(t,T;) = P(t,T,) (r(t)+ £ (t)o(t))dt + oft)dwi(t) “T,-bond”

=)

(think of Ho-Lee or Vasicek model as examples, noan@plicated examples are possible !)

= “wealth equation”
dX™(t) = X"(t)(( r(t)+n(t)Z(t)G(t)) dt+1(t)o(t) dwW( 9) XT(0) = x

“portfolio problem”

n(')er]aX( X E(U ( XH(T))) with T<T,




= Corresponding HJB-Equation

O:]%n?é {vt(t,x, r)+}é(x2n202vxx(t,x,r)—2><ntﬁ\4(r( tx )+ By (tx ))

+X(r+1Z0)v, (t, %, 1) +ay, (t, x 1)}

Step 1:“Solve the maximisation problem in the HIB-Equation

(1) = - (t) w(txr) b w(txr)
a(t) XV (t % 1) o(t) xv(t x 1)
“classical part “correction term”

Step 2:“Substitute the maxima into the HIB-Equation anlgdesthe resulting pde”
..... some really complicated equation... .




Example: “Power utility and Ho-Lee-model

U(x) = x*¥, 0<y <1
dr(t) = (&(t)+bd(t))dt+bdW(t) for some continuous, deterministic functig(t)
dP(t, ;)= P(t, To)[(r (t) - ¢ (t)b(T, —t))dt - b(T; - t)dw(t)]

Important. For portfolio optimization one has to use the dyitanunder thesubjectivemeasure
P, not (!) under the equivalent martingale meagré!

p—
Solution of the portfolio problem can be given esidly as

v(t,x,r) = xY exp(rly(Hl(t)— Hy(T))+y(T-1) r)

_ 1 e)ew(T-Y) 1Y)y T-t
“1-y  -b(R-t)  1-yb({-t) 1-yT -t

7#(1)

Correction term results in an initially “smaller” risky posi tion, but vanishes asymptotically !



Counterexample

Example: “Power utility and Dothan model
U(x) = x/, 0<y<1
dr(t) = r(t)[bdt+odwit)]

= E[U(X0(T))) =+

Generalisations:
- Mixed stock and bond problems
- Problems including bond and stock options



7. More Problems

Optimal investment with constraints
o on the final wealth (see K. (1997), ...)
0 on the portfolio process (see Cvitanic and Karatzas (1993), Kramkbv a
Schachermayer (1998), ...)
0 on risk measures (Karatzas (1999), Uryasev e.a. (1999) \Basderlich (2005),...)

Optimal portfolios in non-diffusion setting¢Benth e.a. (...), Kallsen (..))

Non-utility based approaches
o Universal portfolios (Cover (1995), Jamshidian (1995), ...)
0 Approximation of the growth-optimal portfolio (Platen (2006), ...)
o Value preserving portfolios (Hellwig (1987), Wiesemann (1995), K. (1997),

Estimation problems for the market coefficients

— Stillalottodo!



