Optimal Portfolios, Part I: Basic Methods in the Continuous-Time Setting

Ralf Korn (Techn. Universität Kaiserslautern & ITWM Kaiserslautern)

- 1. Optimal investment: A classical problem
- 2. Optimal investment: Market setting and the portfolio problem
- 3. Optimal investment in complete markets: The martingale method
- 4. Optimal investment by stochastic control: The HJB-Equation

Fraunhofer Institut Techno- und Wirtschaftsmathematik

ITWM

1. Optimal Investment: A classical problem

In ancient times (3000 years ago):

First suggestions by the Babylonians (*Diversify into house, cash and production tools*)

In the literature:

Shakespeare	The Merchant of Venice
Cervantes	Don Quijote (Do not put all your eggs in one basket)

In the fifties:

H. Markowitz Mean-Variance Approach

Scientific state of the art:

Dynamic multi period models, martingale method, HJB equation, duality approaches, (quasi) variational inequalities, ...

Practitioner's state of the art:

One-period models, variants of Markowitz

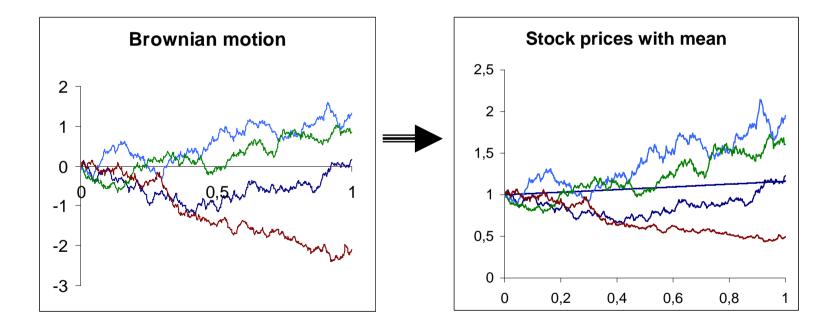
Aim of this mini-workshop: Present recent and applicable results and methods

2. Market setting and the portfolio problem

The security prices (diffusion setting):

$$dP_{0}(t) = P_{0}(t) r(t) dt, \qquad P_{0}(0) = 1, \quad "Bond"$$

$$dP_{i}(t) = P_{i}(t) \left(b_{i}(t) dt + \sum_{j=1}^{m} \sigma_{ij}(t) dW_{j}(t) \right), \quad i = 1, ..., n, \quad P_{1}(0) = p, \quad "Stocks"$$



The trading activities:

 $\varphi_i(t)$: *trading strategy* (= no. of shares of security *i* that the investor holds at time *t*) $c(t) \ge 0$: *consumption rate process* (= (velocity of) consumption at time *t*) $X(t) := \sum_{i=0}^{n} \varphi_i(t) P_i(t)$: *wealth process* (= value of all holdings at time *t*)

Definition 1:

A pair (φ, c) of a trading strategy and a consumption rate process is a called *self-financing strategy* if we have

(1)
$$X(t) = X(0) + \sum_{i=1}^{n} \int_{0}^{t} \varphi_{i}(s) dP_{i}(s) - \int_{0}^{t} c(s) ds$$

i.e. wealth equals initial wealth plus gains / losses from investment minus consumption .

Remark:

We assume that both processes (trading and consumption) are only based on past price observations (are "progressively measurable") and satisfy suitable integrability conditions.

The wealth equation:

Introduce a *portfolio process* $\pi(t)$ (corresponding to a self-financing pair (φ, c)) as an *n*-dimensional stochastic process with components given by

(2)
$$\pi_i(t) := \frac{\varphi_i(t) P_i(t)}{X(t)}, \ i = 1, ..., n \quad \text{``fraction of wealth in stock } i \text{''}.$$

 \Rightarrow we obtain the following SDE ("*the wealth equation*") for the wealth process:

(3)
$$dX(t) = \left(X(t)(r(t) + \pi(t)'(b(t) - r(t)\underline{1})) - c(t)\right)dt + X(t)\pi(t)'\sigma(t)dW(t), \quad X(0) = x$$

Example: "Linear strategies"

$$n = m = 1, b, r, \sigma$$
 constant market coefficients and $\pi(t) = \pi, c(t) = \gamma X(t)$:
(4) $X(t) = x \cdot \exp\left(\left(r + \pi(b - r) - \gamma - \frac{1}{2}\pi^2\sigma^2\right)t + \pi\sigma W(t)\right) > 0$

Definition 2:

We will also call the pair (π, c) an *admissible*, self-financing pair (and write $(\pi, c) \in A(x)$) if the corresponding wealth process stays non-negative after starting with an initial wealth of *x*.

Formulation of the portfolio problem:

Definition 3

i) A strictly concave C^1 -function $U: (0, \infty) \to \mathbf{R}$ is called a *utility function* if it satisfies

(5)
$$U'(0) \coloneqq \lim_{x \downarrow 0} U'(x) = +\infty, \ U'(\infty) \coloneqq \lim_{x \to \infty} U'(x) = 0.$$

ii) The (unconstrained) *portfolio problem* with initial wealth of x consists of solving

(P)
$$\max_{(\pi,c)\in A'(x)} E\left(\int_0^T U_1(t,c(t))dt + U_2(X(T))\right)$$

with
$$A'(x) := \{(\pi, c) \in A(x) \mid E\left(\int_0^T U_1^{-}(t, c(t)) dt + U_2^{-}(X(T))\right) < \infty\}.$$

Examples of utility functions:

$$U(x) = ln(x), \qquad U(x) = \frac{1}{\gamma} x^{\gamma}, \, \gamma < 1, \qquad U(t, x) = e^{-\beta t} \frac{1}{\gamma} x^{\gamma}, \, \gamma < 1, \, \beta \ge 0$$

Properties of utility functions:

strictly increasing \cong more is always better than less concavity \cong decreasing marginal utility, $E(U(X)) \le U(E(X)) \cong$ risk averse investor

3. Optimal investment in complete markets: The martingale approach

The Fundamental Result:

Theorem "Completeness of the market" Let n = m and $\theta(t) \coloneqq \sigma(t)^{-1}(b(t) - r(t)\underline{1}), \quad H(t) \coloneqq \exp\left(-\int_{0}^{t} \left(r(s) - \frac{1}{2} \|\theta(s)\|^{2}\right) ds - \int_{0}^{t} \theta(s)' dW(s)\right)$ (6)a) For every $(\pi, c) \in A(x)$ we have $E\left(H(t)X(t)+\int_{0}^{t}H(s)c(s)ds\right)\leq x.$ (7)b) Let B be a contingent claim and c(.) a consumption process with $x := E\left(H(T)B + \int_{0}^{T} H(s)c(s)ds\right) < \infty.$ (8)Then there exists a portfolio process $\pi(.)$ such that we have $(\pi, c) \in A(x)$ and the corresponding wealth process X(t) replicates the claim B, i.e. we obtain: X(T) = B a.s.(9)

Interpretation of the complete markets theorem:

Part a) yields:

Given a desired consumption process c(.) and a desired final wealth B then they are never realizable if we have

$$E\left(H(T)B+\int_{0}^{T}H(s)c(s)ds\right) > x$$

where x is the initial wealth of the investor.

Part b) yields:

Each desired consumption process c(.) and desired final wealth B can exactly be realized via following a suitable portfolio process π if we have an initial capital of

$$x \coloneqq E\left(H(T)B + \int_{0}^{T} H(s)c(s)ds\right)$$

First consequence:

The unique fair price of a contingent claim with final payoff B is given by

$$E(H(T)B) \quad (=E_Q(e^{-rT}B))$$

<u>Main idea of the martingale approach</u> (without consumption): Decompose the dynamic portfolio problem

(P)
$$\max_{\pi \in A'(x)} E\left(U\left(X^{x,\pi}(T)\right)\right)$$

into a static optimisation problem

(O)
$$\max_{\mathbf{B} \in B(x)} E(U(B))$$

with
$$B(\mathbf{x}) := \{ \mathbf{B} \mid \mathbf{B} \ge 0, F_T \text{-meas.}, E(H(T)\mathbf{B}) \le \mathbf{x}, E(U(\mathbf{B})^-) < \infty \},\$$

and a **representation problem**

"Find a portfolio process $\pi^* \in A'(x)$ with

(R)
$$X^{x,\pi^*}(T) = B^*$$
 a.s. ",
where B* solves problem (O).

<u>Step 1:</u> Solution of the Optimisation Problem (O)

Proposition

Let
$$X(\mathbf{y}) := E\left(H(T)I_2(\mathbf{y}H(T)) + \int_0^T H(t)I_1(t,H(t))dt\right) < \infty \quad \forall \mathbf{y} > 0 \quad (*)$$

Then, *X* is continuous on $(0,\infty)$ and strictly decreasing with $X(\infty)=0$, $X(0)=\infty$

Theorem 1

Let x > 0. Under assumption (*) the optimal terminal wealth B^* and the optimal consumption process $c^*(t)$, $t \in [0, T]$, are given by

(10)
$$B^* := I_2(Y(x)H(T)), \quad c^*(t) := I_1(t, Y(x)H(t)),$$

and there exists a portfolio process $\pi^*(t)$, $t \in [0, T]$, such that we have

(11)
$$(\pi^*, c^*) \in A'(x), \quad X^{x,\pi^*,c^*}(T) = B^* \text{ a.s., } J(x^*,\pi^*,c^*) = \max_{\substack{(\pi,c) \in A'(x)}} J(y;\pi,c),$$

i.e. (π^*, c^*) solves the unconstrained portfolio problem.

Corollary

Assume that the conditions of Theorem 1 are satisfied.

a) The optimal consumption process $c^*(t)$, $t \in [0, T]$, for the *consumption problem*

$$\max_{\pi,c)\in A'(x)} E\begin{pmatrix} T\\ \int U_1(t,c(t)dt) \\ 0 \end{pmatrix}$$

is given by

(12)
$$c^{*}(t) := I_1(t, Y(x)H(t)),$$

and there is a portfolio process $\pi^*(t)$, $t \in [0, T]$ with $(\pi^*, c^*) \in A'(x)$ and $X^{x, \pi^*, c^*}(T) = 0$ a.s..

b) The optimal terminal wealth B^* for the *terminal wealth maximization problem* $\max_{(\pi,0)\in A'(x)} E\left(U_2\left(X^{\pi}(T)\right)\right)$

is given by

(13)
$$B^* := I_2(Y(x)H(T)),$$

and there exists portfolio process $\pi^* \in A'(x)$ with $X^{x,\pi^*,c^*}(T) = B^*$ a.s..

<u>Step 2:</u> Computation of the Optimal Strategy – the Representation Problem (R)

An example: Log-utility and final wealth maximization, i.e. $U_2(x) = ln(x)$, $U_1(t, x) = 0$ constant coefficients, d = 1.

 \Rightarrow Compute: $I_2(.), X(y), Y(x),...$

Use Corollary b)

$$\Rightarrow \qquad \mathbf{B}^* := I_2(Y(x)H(T)) = x \frac{1}{H(T)} = x e^{\left(r + \frac{1}{2}\theta^2\right)T + \theta W(T)} = x e^{\left(\left(r + \theta^2\right) - \frac{1}{2}\theta^2\right)T + \theta W(T)}.$$

 \Rightarrow Guess the corresponding portfolio strategy from this explicit form as

(14)
$$\pi^*(t) = \frac{\theta}{\sigma} = \frac{b-r}{\sigma^2}$$

$$\Rightarrow \qquad \mathbf{B}^* = X^{\pi^*}(T), \text{ i.e. we have } \pi^*(t) = \frac{b-r}{\sigma^2}$$

Note: For arbitrary *d* we obtain $\pi^*(t) = (\sigma\sigma')^{-1}(b - r\underline{1})$

Method 1: "Comparison of coefficients"

Idea: Generalize the method of the example

- guess a process X(t) with X(0) = x, $X(T) = B^*$ a.s.,
- write X(t) as a functional of the underlying Brownian motion and the market coefficients,
- apply Itô's formula to this functional and compare drift and diffusion terms of the so obtained sde with those in the general form of the sde for a wealth process.

(see Theorem 2 below)

Method 2: "Feedback representation in the Markovian case"

More complicated, uses ideas of Malliavin calculus (see K. (1997) for an introduction)

Theorem 2

Assume the complete market setting of this section and that we have

(15)
$$\frac{1}{H(t)} E\left(\int_{t}^{T} H(s)c^{*}(s)ds + H(T)B^{*}|F_{t}\right) = f(t, W_{1}(t), ..., W_{n}(t))$$

for a non-negative function $f \in C^{1,2}([0,T] \times \mathbb{R}^n)$ with f(0,...,0) = x. Then the optimal trading strategy $\varphi(t) = (\varphi_0(t),...,\varphi_n(t))', t \in [0,T]$, is given by

(16)
$$\varphi_i(t) = \frac{1}{P_i(t)} \left(\sigma(t)^{-1} \nabla_x f(t, W_1(t), ..., W_n(t)) \right)_i, \quad i = 1, ..., n,$$

(17)
$$\varphi_0(t) = \left(X(t) - \sum_{i=1}^n \varphi_i(t) P_i(t) \right) / P_0(t) ,$$

where X(t) is the wealth process corresponding to the above trading strategy $\varphi(t)$ and the consumption process $c^*(t)$ of Theorem 1. $\nabla_X f(.)$ denotes the gradient of f with respect to the last n variables. The optimal portfolio process $\pi^*(t)$ of Theorem 1 is given by

(18)
$$\pi^{*}(t) = \frac{1}{X(t)} \sigma(t)^{-1} \nabla_{\chi} f(t, W_{1}(t), ..., W_{n}(t)) .$$

4. Optimal investment by stochastic control: The HJB-Equation

The classical continuous-time portfolio optimization approach by Merton (1969, 1971, ...) does not use the completeness of the market.

Merton's idea:

Identify the portfolio optimization problem as a special case of a *stochastic control problem*. Then, use standard results from stochastic control theory such as

- the Bellman principle
- the Hamilton-Jacobi-Bellman-Equation ("HJB-Equation")

Can be used as a cooking recipe, has a broader scope of application than the martingale, needs the complete solution of a non-linear partial differential equation ...

\Rightarrow

We will give a short survey of stochastic control theory (see also Korn and Korn (2000))

Excursion: Solving stochastic control problems (for simplicity *n*=1)

Let
$$v(t,x) := \max_{\pi(.)|[t,T] \in A(x)} E^{t,x} \left(U(X^{\pi}(T)) \right)$$
 value function

Bellman-Principle:

$$v(t,x) = \max_{\pi(.)|[t,s] \in A(x)} E^{t,x} \left(v(s, X^{\pi}(s)) \right)$$

Localize the BP: Apply the Itô-formula \Rightarrow

$$\begin{aligned} v(t,x) &= v(t,x) + \\ &+ \max_{\pi(.)|[t,s] \in A(x)} E^{t,x} \left(\int_{t}^{s} \sigma \pi(u) X^{\pi}(u) v_{x}(.) dW(u) \right) \\ &+ \int_{t}^{s} \left(v_{t}(u, X^{\pi}(u)) + (r + \pi(u)(b - r)) X^{\pi}(u) v_{x}(.) + \frac{1}{2} \sigma^{2} \pi(u)^{2} X^{\pi}(u) v_{xx}(.) \right) du \end{aligned}$$

Divide by *s*–*t*, (formally) interchange the limit $s \downarrow t$ with the integration and expectation:

(19)
$$0 = \max_{\pi \in IR} \left(v_t(t, x) + \left(r + \pi (b - r) \right) x v_x(t, x) + \frac{1}{2} \sigma^2 \pi^2 x v_{xx}(t, x) \right)$$

<u>Theorem:</u> *Verification theorem for the solution of the Hamilton-Jacobi-Bellman-Equation* If there exists a classical (i.e. a sufficiently differentiable) solution of the HJB-Equation

$$\sup_{\pi \in R} \left\{ v_t(t,x) + \left(r + \pi'(b-r)\right) x v_x(t,x) + \frac{1}{2} \pi' \sigma \sigma' \pi x^2 v_{xx}(t,x) \right\} = 0$$

$$v(T,x) = U(x)$$

that is polynomially bounded then we have $v(t,x) = \sup_{\pi(.)|[t,T]} E^{t,x}(X^{\pi}(T))$,

and an (admissible) portfolio process $\pi^*(t) (= \pi^*(t, x))$ that yields the solution of the optimization in the HJB-Equation is an optimal portfolio process.

Algorithm for solving the portfolio problem

Step 1: Solve (formally) the optimization problem in the HJB-Equation $\Rightarrow \pi^*(t, x)$ (still depending on the unknown (!) value function and its derivatives).

Step 2: Insert π^* into the HJB-Equation, drop the sup-operator, solve the obtained partial differential equation explicitly.

Step 3: Check all the assumptions made during Steps 1 and 2 (very important, often forgotten !).

Example: HARA-utility function

Solve the problem

(20)
$$\max_{\pi \in A'(x)} E^{0,x}\left(\frac{1}{\gamma}(X(T))^{\gamma}\right), \quad \gamma < 1, \ \gamma \neq 0 \text{ fixed.}$$

with the value function

(21)
$$v(t,x) = \max_{\pi \in A'(t,x)} E^{t,x} \left(\frac{1}{\gamma} (X(T))^{\gamma}\right)$$

Corresponding HJB-Equation

(22)
$$0 = \max_{\pi \in [a,b]^n} \left\{ \frac{1}{2} \pi' \sigma \sigma' \pi x^2 v_{xx}(t,x) + \left(\left(r + \pi' (b - r\underline{1}) \right) x \right) v_x(t,x) + v_t(t,x) \right\}$$

(23)
$$v(T,x) = \frac{1}{\gamma} x^{\gamma}$$

Step 1: "Solve the maximisation problem in the HJB-Equation"

(24)
$$\pi^{*}(t,x) = -(\sigma\sigma')^{-1}(b-r\underline{1})\frac{v_{x}(t,x)}{xv_{xx}(t,x)}$$

Important:

Note that we have implicitly assumed: $v_{xx} < 0$, $\pi^*(t,x) \in [a,b]^n$, $v \in C^{1,2}$. (*)

<u>Step 2:</u> "Solve the resulting partial differential equation"

Put $\pi^*(t, x)$ into equation (22), drop the sup-operator and obtain:

(24)
$$0 = -\frac{1}{2}(b - r\underline{1})'(\sigma\sigma')^{-1}(b - r\underline{1})\frac{(v_x(t, x))^2}{v_{xx}(t, x)} + rxv_x(t, x) + v_t(t, x), \quad v(T, x) = \frac{1}{\gamma}x^{\gamma}.$$

Ansatz:

(25)
$$v(t,x) = \frac{1}{\gamma} x^{\gamma} f(t)$$
 for some suitable function $f(t)$.

 \Rightarrow

(26)
$$f'(t) = -\left(r\gamma + \frac{1}{2}\frac{\gamma}{1-\gamma}(b-r\underline{1})'(\sigma\sigma')^{-1}(b-r\underline{1})\right)f(t), \quad f(T) = 1$$

 \Rightarrow

(27)
$$f(t) = \exp\left(-\left(r\gamma + \frac{1}{2}\frac{\gamma}{1-\gamma}(b-r\underline{1})'(\sigma\sigma')^{-1}(b-r\underline{1})\right)(T-t)\right)$$

(28)
$$\pi^*(t,x) = \frac{1}{1-\gamma} (\sigma\sigma')^{-1} (b-r\underline{1})$$

.

Step 3: "Check the assumptions"

 $v(t,x) = \frac{1}{\gamma} x^{\gamma} f(t)$ according to (27) satisfies (*), $\pi^*(t,x)$ satisfies (*) for suitable constants *a*,*b* Hence, choose them big enough and arrive at:

The optimal portfolio process is given by

(29)
$$\pi^*(t) = (\sigma\sigma')^{-1}(b-r\underline{1})\frac{1}{1-\gamma}$$
 "Constant portfolio weights"

Note the form of the optimal portfolio process and its dependence on γ , the risk aversion parameter!

Note also that the optimal wealth process has the form of

(30)
$$X(t) = x \cdot \exp\left(\left(r + \frac{1}{2}\frac{1}{1-\lambda}\left(b-r\underline{1}\right)'\left(\sigma\sigma'\right)^{-1}\left(b-r\underline{1}\right) - \pi^{2}\sigma^{2}\right)t + \frac{1}{1-\gamma}\left(b-r\underline{1}\right)'\left(\sigma'\sigma\right)^{-1}\sigma W(t)\right)$$

In particular, it is strictly positive !

More recipes for using the HJB-Equation technique:

i) Additional consumption

(31)
$$v(t, x) := \sup_{(\pi, c) \in A'(t, x)} E\left(\int_0^T U_1(t, c(t)) dt + U_2(X(T))\right)$$

with A'(t, x) being the set of admissible strategies on [t,T] with initial wealth of x at time t. \Rightarrow Corresponding HJB-Equation

(32)
$$0 = \sup_{c \ge 0, \pi \in [a,b]^n} \left\{ v_t(t,x) + \left(\left(r - \pi'(b - r\underline{1}) \right) x - c \right) v_x(t,x) + \frac{1}{2} \pi' \sigma \sigma \pi x^2 v_{xx}(t,x) + U_1(t,c) \right\}$$
(33)
$$v(T,x) = U_2(x)$$

ii) Finite time horizon with discounting

(34)
$$v(t, x) = \sup_{(\pi, c)(t, x)} E^{t, x} \left(\int_{t}^{T} e^{-\rho(s-t)} U_1(c(s)) ds + e^{-\rho(T-t)} U_2(X(T)) \right).$$

 \Rightarrow Replace $U_1(t,c)$ in the HJB-Equation (32) by $U_1(c) - \rho v(t,x)$.

iii) Infinite time horizon with discounting

(35)
$$v(x) = \sup_{(\pi,c)\in A'(x)} E^x \left(\int_0^\infty e^{-\rho s} U_1(c(s)) ds \right)$$

 \Rightarrow

HJB-Equation related to this problem (no boundary condition !!!)

(36)
$$0 = \sup_{(\pi,c)\in[a,b]^n\times[0,\infty)} \left\{ \left(\left(r + \pi'(b - r\underline{1}) \right) x - c \right) v_x(x) + \frac{1}{2} \pi' \sigma \sigma' \pi' x^2 v_{xx}(x) + U_1(c) - \rho v(x) \right\} \right\}$$

More on this: this afternoon ...