Stochastic Agent-Based Models in
Economics and Finance:

An Introduction to Quantitative Modelling
Concepts for Interacting Heterogeneous
Agents

Thomas Lux

University of Kiel

Lectures at the University of St, Andrews, 8 January 2009



Agent-Based Models in Economics and Finance:
Schedule

Stochastic Models of Interacting Agents: Structure and
Quantitative Modeling Concepts

a. The Master Equation Formalism: Stationary Solutions and Transient

Behavior
b. Dynamics of Means and Higher Moments
c. Heterogeneous Beliefs and Asset Price Dynamics
d. Artificial Markets with Herding and Strategy Choice

e. Estimation of Stochastic Agent-Based Models



A Stochastic Framework
for Socio-Economic Interactions

» similar to a discrete choice with social interactions
(Brock/Durlauf), but dynamic framework and consideration
of finite populations (no thermodynamic limit)

» we might dispend with utility maximization and simply
formulate dynamic behavioral models of the time
development of agents’ decisions or activities

» since we cannot fully capture agents’ idiosyncratic
behavioral elements we adopt a stochastic approach of
agents’ choices



Motivating examples

» adopters and non-adopters of a technology

» fundamentalists versus chartists, bears versus bulls in
financial markets

» supporters of government and opposition

» followers and non-followers of fashion



A Stochastic Framework
for Socio-Economic Interactions

We consider a population with a binary set of choices or opinions
(denoted by "+" and "-"):

n,+n_=2N

The socio-economic configuration at any point in time can be
characterized by:

1
n:E(n+—n_)

or the opinion index X:

n
xX=—), xel[-11
N [—11]

Note that n, =N + n, n_=N - n.



v' We assume that the dynamics can be captured by
certain transition probabilities for agents to move
from the “+” to the “-’group and vice versa, p_, and

P

v" This means that the population composition follows
a stochastic process (which might have systematic
components which enter via the specifications of p__
and p__ ).



A complete characterization of the process requires to solve
for the probability distribution at any point in time, ¢, over
all possible states, n or x:

N
P(n;t) with > P(n;t)=1
n=—N

or

1
P(x;t) with Y P(x;t)=1

x=—1

These time-dependent distributions might or might not
converge to a stationary distribution for t—oo.



Dynamics: the probabilities to find the system in states n (or x)
change over time according to the probabilities for
movements of single individuals. For example, the
configuration might change from n to n+/ or n-1 with one
agent moving to another group with probabilities:

win—>n+1l)=n_p, (n;t)=(N-n)p,_(n)

win—>n—-1)=n,p_,(n;t)=(N+n)p_,(n)

assuming that there 1s an influence of the overall configuration »
on individuals’ propensities to move between groups and that
it 1s only the overall number of agents in the “+” and -
groups, that influences these decisions.



Transitions in Continuous Time: Jump Markov Processes

We assume that time 1s continuous and that individual switches
can be formalized via asynchronous Poisson processes in
continuous time. We can, then, specify the dynamic process
more formally via conditional probabilities, e.g.

w(n+1,t+Atn,t), o(n-1,t+A4tnt), etc. and in the limit 4t—0
we define:

o w(n+1,t+ Atn,t)

lim =w(n+1n,t)=wsr(n),
At—0 At

- wo(n-1,t+ Atin,t)

lim =w(n—In,t)=w (n).

At—> 0 At



For At—0 two or more simultaneous movements of
individuals become increasingly unlikely and the
probability for one individual to change his mind
converges to A4t with 4 the transition rate of the
Poisson process. The Poisson transition rates for the
population process are, therefore, given by:

w(n+1

nt) =w,(n)=np,. and

w(n-1

ny) = w m)=np.,



Reminder: the Poisson distribution counts the number
of events during a time interval. For a Poisson rate £
we get:

n.

P](At)z/ut-e‘m=Mt(1—Mt+MAU +...)
2
Py(At)= (M; S e o 1)

For At -> 0, only the first term of P,(At ) needs to be considered
since simultaneous movements of agents become increasingly
unlikely. Note, however, that our ‘A’ might be state-dependent
and nonlinear!



The overall evolution of the system 1s characterized by
the time change of the probabilities over all states.

In general, this amounts to a system of difference
equations for all possible system configurations »
(the Master equation):

P(n,t+A4t)—P(n,t)=

> ol e+ Al 0)P(n' )= Y ool 1 + At 1)P(n; 1)
n' n'

o J/ o J

inf low of probgbilily to staten  outflow of proba\éimy from state n




Master Equation in Continuous Time

In the continuous-time limit we get the vector differential equation:

n,t)P(n,t)}

dPC(:;t) =2 twlaln', )P (n's0) = w(n

for the probability flux. Note that in the continuous-
time limit, transition probabilities w(.) have been
replaced by transition rates w(.) on the right-hand side
of the Master equation.



In our case of Poisson jump processes of single agents, we can
restrict attention to neighboring states, n’=n £ I:

dpa(l’z"’): wi (1 + 1)P(n+ 1:0)+ wa (n— 1P (n — 1:1)

- (WT (n)+ Wy (n))P(nt)



Assuming that the transition probabilities of individuals do not
depend on the raw numbers, but rather on the ratio of members

of both groups, we can also express the dynamics in terms of
the opinion index x.

Since An = I corresponds to 4x = I/N, we get:

qun;u00=N0—xm+u>

w, (x) = w(x . %

W, (x)= w(x L

N

mﬂ=nm+uq=N0+xm+u>




Master equation for opinion index x:

Jonle e b

x + I]P(x 1 L;t
N

dP (x;t)
dt



The Fokker-Planck Equation as a Taylor Series
Expansion of the Master Equation

Since for large V, x 1s close to a continuous quantity, we can
perform a Taylor expansion with respect to Ax. Rearranging
gives:

dP (x:1) _ WT(X—LJP(X—%J)—WT(x)P(X"t)

dt N

R Wi(x . Ljp(x . i,-tj oy ()P (1)

N N

A second-order approximation of the first and second group of
components on the right-hand side around x yields:



oP(x; I o %
gt ) _ [wT(x)P(x t)][— ﬁj Eax_zf""”“’)(""’)](‘ﬂ
0 N\, 1 10 (1Y
+6_x[w‘l'(X)P(x’t)]F+Eax_z[w‘l’(X)P(x’t)][Fj
o PG 0 ) mwy (5 )P (s 0] -
o1 Cax ] v
F 3o lOw () e wy (2 )P0l

Fokker-Planck equation




The Fokker-Planck Equation

The FP equation consists of two terms:

" the drift term for the systematic (mean-value) part of the
dynamics

A(x) = %(wﬂx)—wux»

* the diffusion term for the fluctuations around the expected
value:

D(x)=%(wx)+wux))



Remarks

the Fokker-Planck equation maintains only terms up to
second order, so that 1t amounts to a Gaussian
approximation of the ‘true’ probability distribution at time ¢
(nevertheless, the time evolution leads to different shapes of
the transient and stationary distributions),

for simple drift and diffusion functions, i1t might be possible

to solve explicitly for the stationary distribution from
dP(x,t)/dt = 0,

in general, the Fokker-Planck equation can be analyzed and
simulated more easily than the master equation,

the N’ dependence of the diffusion term in our setting is a
consequence of the law of large numbers.



Derivation of Macroscopic Laws of Motion
from the Microdynamics

The expected value of x at time 7 1s given by:

I
= Z xP(x;t)

x=—1
and 1ts change 1n time 1s obtained from the Master equation:

dx, & dP(xt)
- ' = X
dt 2 dt

x=—1

In general:

dxt B
dt _Z

X



With a few simple manipulations we get:

dxt ZZXW ,P(x t) szwxxp(x t)
=33 x wx,xp(x,-t))—zwax,xP(x;t)
:ZZ(x'—x)wx,xP(x,t)

=dyx ]

= Z a, P(xt)=a,,
X

. _ ’
with w_,. = w(x



a, ; 1s the so-called first jump moment which, in our framework,
coincides with the drift term of the Fokker Planck equation:

Ay, 1 = Z (X'=X )Wy = %WT(X)'F (_ %jwi(x)

=§(ww)—wux))

The change 1n time of the expected value of x 1s, therefore,
given by the expectation of a, ; , 1.e., the average jump of x
weighted by the probability of x at time ¢z, P(x;?):

ax _

=Y a, P(xt)=a,,
dt =



Approximation of mean-value equation:

First-order approximation of the mean-value dynamics
yields:
dx, _
——=a X
dt x,1 ( )

which 1s exact if the first jump moment is linear 1n x.

A second-order approximation adds a correction term
depending on the fluctuations:

d_
o =Efa,;(x)+(x— x)ax](x)+ (x—X) ay ;(%)+...]
=0 O'x
£ = . ‘]72 o Pt Y
= xj\ﬂ/ + SOy (X )
H_J L2 .
pure mean value dynamics M

second -order correction



Simple example: birth/death dynamics

nt)=An=r, wn—1

w(n+ I n,t)z,u(%)nzln

With A, u: birth and death rates, N: maximum population,
carrying capacity of environment

Master equation.

dpg’“) P Li) 1, P(n 4 1) = (41 )P (nst)

First jump moment:

2
n

an,l=Z(n’—n)w(n—>n’)=]-rn+(—])-ln:/In—,uy
n!



Mean values 1n first-order approximation:

— —2

dn, n? — n
=a,; =An—u—=An—u—

dt n,l H N H N

In concentrations, X = n/N, we get:

dt X——

dp(x;t) _ ,p(x_i,-tj” ]va(ﬁ_tj (r. +1.)P(x:1)




Second_ Order approximation: ‘\ Microscopic simulation
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~ Ax—ux - uc
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M H



2nd Example: a pure social dynamics or herding process

dptapx

—n—a X
Py =Ve o

P = Ve
With v: frequency of jumps, «,: bias, a;: herding intensity.
Inspiration:

Discrete choice (in economics):

pU 4

eV 4 PUB 4

prob(buy brand A)= c

Particle dynamics (in physics): magnetization etc.



The population transition rates are:

wa(x)= g\f(l—xj)vea“a]x

n

wi(x)= g\f(]+x)ve_a0_a1x
1y

The first jump moment 1s:

Ay ] = Z (X'—X)erx
xl

= %[N(]—x)vea“a]x ~ N(I+x)ve “07%1%]



Using the hyperbolic trigonometric functions, the first-order
approximation to the mean-value dynamics becomes:

dx,

— = 2v(Tanh(ay +a,;%) =X) Cosh(ay + &%)

Stationary states are obtained from:

% —0=x =Tanh(ay+a,X )

Features:
* unique stable steady state x* for a, small, a;< 1,

» multiple steady states x,* # 0 for a, small, a;, > 1, the formerly
unique steady state x* becomes unstable.
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Various cases of the stochastic herding model



a0 = 0, a1l = 1.15 a0 = 0.025, a1 = 1.15

Examples of Transient Densities from Fokker-Planck Equation



Second-order approximation:

% = 2v(Sinh(ay +a;x)—xCosh(oy + o ;x) ) +
v((a,° —2a, )Sinh(a, + ;%) — Xa,Cosh(a, + a;%))o?
éa;,z(f)

To implement the correction term, we need information about
the time evolution of the variance!



Dynamics of Second Moments

Similarly as with first moments, we see that the second
moment 1s time dependent and its evolution can be obtained
via the Master equation:

_=Zx2P(x;t)

_ZxZZ( JP(xX't)—w. P(x:t))
_ZZ(x'Z—x Jw P(x;t)

= Z Z((x’—x )+ 2x(x'—x ))w. P(x;t)



Defining the second jump moment:

2
Z(X"X) Wy'x =dx,2
xl

We arrive at the exact dynamics of the second moment of x:

i
dt

Z(ax,2 T 2xax,] )P(xft)
X

=a, )+ 2xax’1




The dynamics of the variance 1s obtained as:




Again we apply a Taylor series expansion around
the current expectation:

%0'5 =Efa,; (;)Jr (Li)axz (;)

XA, (x)+ 2054y (x)

If both a, ; and a, , are linear, the last line 1s again exact, if
not, it 1s an approximation up to the first order.



st example: birth-death process

ay ; =§(x’ —x)zwx'x =%(/1n+,u%n)=%(ﬂx+,ux2)

We arrive at a simultaneous system of equations:

with or

...................................... / without: first
i s Z vs. second

~ x=Ax— Hx [~ ,UO'
dt order!



Variance in equilibrium for first-order approximation:

— —2
;*zi’o_i(;*): -(/1x+,ux ) . A

7 ON(A-2ux) Nu

... gets more complicated in simultaneous solution, but for
large N 1s numerically not too different:

Example: A=1, p=2




2nd example: herding model

ax,gzz(x'_x)zwx,x NIZ( wn (), (x)

X

which 1s the diffusion term D(x) from the Fokker-Planck
equation.

We arrive at (for 0,=0, a; = ):

% 2 _2v (Cosh (a'x) xSinh (a ;))

h'd

axZ(x)

((a I)Cosh (a’ x)- xaSinh{a E))Uf

ZaxJ(x)




The variance 1n a steady state, x*, 1s obtained via:

d o
dt
N ; B = (Cosh (05 ;)— gSinh (a;» .
T ZN((a — 1)Cosh (a ;)— a xSinh (a ;»
We get: = ]




Variance

Mean value equilibria and stationary variances for varying a,
(0tp = 0)



Mean value
equlibria

time

5 samples of herding model: N =200; o, =0; a; = 1.1; v=1

Remark: variance 1s local, covers only fluctuations within basin
of attraction



Z;?
ol N |
Transient variance
-l dynamics .
=
B LJ’ I . ]
Transient
: mean value |
dynamics
7 S~ N — e — — — — —
g I VA T VT o
= - 1 15 20 25 30 S 4 e B
time

5 samples of herding model: N =500; 0, =0; a;, = 1.2; v
Initial condition: x, = -0.04



A Financial Market Model

The ‘+’ and ‘-’ groups are now identified as bullish and
bearish speculators.

Transition probabilities account for:

" bias
" herding
» reinforcement of herding by momentum
an+a x+a -y P (t) —Q)— X X—QX) P (t)
P+ =Ve Y o,p=ve ’

Note: //v 1s mean time between changes of opinion



Dynamics of sentiment index x:

@:2V(Sinh(a0 +051)?+052p(t))
dt %
p'(t)

) )

—ECOSh(OCO +0(137-|—0(2
v

Price dynamics from chartist-fundamentalist literature:

d
—p=0ED=0(ED.+ ED
dtp ﬂ 18( c f)

B: price adjustment speed, ED: excess demand



Chartists are the bullish/bearish agents:

ED,=(n_.—n_)t,=2Nxt,=x1_,1, =2Nt,

t : fixed trading volume per agents.

Fundamentalists have standard excess demand function:

EDe=(pr—p: )Ty

Dynamic system (in mean values to first-order approximation)
d_ _ _ 4

d—); = 2v(Tanh(U) — x )Cosh(U) ,U =0y +a;x +a, p(t)

»

% = B(Tx+T,(p;—p))




dx dp
Dvnamic equilibrium: Al =()
Y b dr  dt

Stationary states are obtained from:

dx, I, ~
L= 0= X =Tanh(ap+a% ), p*=—< x*+p,
dt Iy

Features:

* unique steady state x* = 0 for o, small, a,< 1, together with price
equal to fundamental value

* multiple steady states for a,, small, o, > 1 , two symmetric stable
staedy states x,* # 0 for a, = 0, together with steady state prices
deviating from fundamental value (bubble equilibria)
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price
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Stable Symmetric Bubble Equilibria
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price

Cyclical Dynamics

price

sentiment x
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Stability conditions:
(i) for x*=0:a; <1
VZ(V(O{I—])+CZ2,BTC)—,BTf <0

(ii ) for x,*#0:ca; >1

VoH(va;+a,fT. )(1—x.%)—v}Cosh(o;x,™)— Ty <0

25 0.50 0.75

19}




Beyond mean values: are there some interesting results in higher
moments?

... the system we have formulated 1s a mixture of stochastic and
deterministic components:

% = 2v(Tanh(U) — ¥Cosh(U) \U = ay +a, %+ o, 2L
»

%=ﬂ(Tcx+Tf(pf p))



Exact solution: bi-variate Master equation:

dQ(x,p;t)/dt = inflow from other states - outflow from {x, p,
= (Wel®) OQ(xX'pit) - wen(t) Q(x.p;1))
t (WD) Q(x.p'Y) - Wy (1) Q(x.p;1)

w..(t): transition rate in ¢ for a transition from i"to i (i = x,p)

... where I assume that x and p do not move simultaneously
(otherwise we would have to consider additional terms of

format Wxx ‘Dp (t) Q (X ',p ’;0 )



Mean value equations:

x=2 > xO(x,p;it),p=2.> p O(x.p;t)
X p X p

%§=sz —-0(x.pit), —p ZZP —Q(xp t)
X p

.. leads to :

dXt =22 waxe(x pit)- Zwaxe(xp t)
X p x'
=> > D x'w0(x, p,w—z Z xw o O(x,p;t)
X p x' x x'
=3 D (x'-x)w, O(x,p.t)
X p o J

—
=dyx ]

=> > a,,0(x,pit)=a,;(x,p)
X p

...same
for p



Taylor series expansion:

d — —— o° o° o
—xxa,(x,p)t0.5{oc,——a,; +20,, ———a, 1+ 0, = Ay}t
dt 2

ox ox Op op
d — —— 5? 5° 5°
—pEa x,p)+0.5 o a.,+20,,———a, ;+o,.,. ——d, ;4
dt P p,]( p) { XX /9;2 p.1 xp /3’; /9; p.1 pp /9;2 p.1/

pa

First-order approx.
Second-order correction



For the implementation we need a stochastic formalization of the
price process:

e we assume an 11d distributed liquidity component p in excess
demand with expectation 0

e prices change by one basic unit as a Poisson process with
probabilities:

Wiy = [ pp BCED+ 1) p( 1)dpe

—ED
Wy, = I_OO P(—ED—p)p(p)du,



1t follows that:

ap,] — Z (p’_p)wp’p — ﬂED
xl

= b= BED = p(T. +(py—p)Ts)

Note:

* first order approx. of price equation is already exact because
of linearity!

* the first order approximation to the bi-variate stochastic
model coincides with our previous heuristically motivated x-p-
dynamics



Second moments:
ZZ O(x, pit), pi = ZZ p’O(x,pit),

xXp = ZZ xpQ(x,pt)
X p

a 2dQ(x,p;t)
dtxt ZZ i dt

:ZZ XZZ(WXX'Q(X ,p,'t)—wxer(x,p;t))
X p x'

=S5 > ((x'=x )7+ 2x(x'=x ))w O(x, pit) =
x p X

ax,Z(x: p) + ZXCIXJ(X, p)



Second moments...cont’d:

d
;tpt = ap,z(x,P)+2Pap,1(X,P)

=T X (W OX pit) = O, pit)) +
X p x'
Z(pr’Q(x) p’;t) _ Wp'pQ(x’ p;t)) )

=ax’1p+ap’1x



Exact equations of variances and covariances:

d

Eg)g — ax,2(x’p)+ Z(X_;)ax,l

d

0w = (p—play;+(x—x)a,

d —
Eaé =a,,(x,p)+2(p-pla,,



First-order approximation to (co)variance dynamics:

d 2 . 2 0 0

EGX = ax,2(x’p)+20x gax,] +2GXP Eax,]

d - O %, 2 0 2 0
L —pr(gax,] +£ap,])+0p 5%1 hO Py
d 2 T 2 0 0

Eﬁp :ap’g(x,p)+20'p Eap,l +2prgap’]

Closed system of 5 equations in Ist and 2nd moments!



Insights

* Variance equations from agent-based models
generically contain autoregressive elements:

nonlinear dynamics in 2nd moments, ARCH effects
(Ramsey, 1996)

* Analysis of variances 1n stationary state, transient
dynamics etc



* We can solve for stationary variances and covariances
around the fundamental and bubble equilibria from our
system

Mean value
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/
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\
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n | | 1.2 | 1.4 |
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1 1.5

G

Fig. 1: Variance of prices in statistical equilibrium. The left-hand part shows the variance of
prices in fundamental equilibrium (given in eq. 4.2¢), the right-hand part shows the variance
of prices in bubble equilibria (given in eq. 4.3c). The vertical asymptotes correspond to
values of a| where either the fundamental equilibrium or the bubble equilibria loose stability.
In the intermediate part between both asymptotes, no attracting state exists and only periodic
solutions prevail. The parameter values used in this graph are: v=0.5, a; =075, =1, T. =
Tg= 0.5, N = 100, o, = 0.01. Loss of stability occurs at cj = 0.75 for the fundamental

equilibrium and at o) = 1.08 for bubble equilibria.

Same behavior for all 2nd moments!



Transient Dynamics

« Shock to fundamental value: overshooting and mean
reversion

* Goes along with predictable variation in volatility:
decrease of volatility upon impact, oscillatory
reversion to steady state level
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Fig. 2: Transient dynamics after shock to mean values. The shock consists in an increase of the
fundamental value from 9.5 to 10 at time t = 10. Panel a) shows the dynamics of mean values
p and x. The thin line depicts the variation of pg. Panel b) shows the transient dynamics of
variances Gy and op,. Most parameter values are the same as in Fig. 1 with the exceptions
of o, = 104 and o) = 0.6. Equilibrium values of variances are o4 (Eg) = 0.075 and opp(Eg)

=~ 0.042.



Volatility shocks: persistence

Spp
G.'{H ﬂ]i}:
.15 |
Cpp
0. oRpS
- ' thime
10 20 0

Fig. 3. Transient dynamics after volatility shock. The shock consists in a temporary increase of
the variance ay,, by about 25% at time t = 10. Note that mean values remain constant during
this adjustment process. Parameter values are the same as in Fig. 1 together with aj = 0.6
Equilibrium values of variances are o, (Ep) = 0.15 and opplEg) = 0.085.



Variances 1n Oscillatory Regime

e Cyclical variation of 2nd moments along the cycle

« Different degrees of predictability in different
market phases

e Secular increase of theoretical variances because of
random phase shifts



% |

Cxx

l = time

p-10
Spp

0.5 K

Fig. 4: Oscillatory dynamics. Part a) shows the dynamics of x and Oxx, part b) shows E and

Opp- Both variances had to be scaled appropriately in order to lodge them in the same
graph as mean values. Parameter values are as in Fig. 1 together with cc) = 1.

Variances 1n Oscillatory Regime



Fig. 5: Limit cycle and liinit gully. The thick, solid line shows the periodic solution obtained
for mean values x and p. The broken lines represent the varying extent of "transversal"
fluctuations away from the orbit during the different stages of the cycle (the "limit gully").



A Richer Framework (Lux and Marchesi, 1999, 2000)

As before:

different types of traders: "noise traders" and "fundamentalists"
noise traders rely on: charts (price trend) and flows (behavior of others)

traders formulate demand and supply, market maker adjusts the price in the usual
manner

New features:

v' traders compare profits gained by noise traders and fundamentalists and switch to

v

the more successful group.

changes of the (log of the) fundamental value follow a Wiener process: In(p;,) =
In(p;,) + & At with g ~N(0, 5,) ,

-> news arrival process exhibits neither fat tails nor clustered volatility



still: changes of behavior occur according to state-dependent transition
probabilities:

this means: during a small time increment At, one individual will switch
between behavioral alternatives (1 and j, say) with probability: m;(t) At

asynchronous reactions of

individual agents:

/time

1 t




(1) switches of noise traders between optimistic and
pessimistic

(2) adjustment of the price [by one elementary unit, e.g. one
cent] depending on imbalances between demand and

supply.

transition probabilities:

pi.=vyexp(U) andp _, =v;exp(-U),

ED
wny, = [ o OEDE 1p()dps wh, = [ B~ED~p)pf i



New component:

switches between noise traders and fundamentalists depending on
comparison of profits:
actual profits gained by chartists: capital gains (or losses) vs.
expected profits of fundamentalists: percentage difference between

prevailing price and assumed fundamental value

transition rates:
7, =Vvyexp(Uy) and 7, =v, exp(-U,),

with: U, = a5 * profit differential



Profit differentials in transition rates between noise trading and
fundamentalism:

r+]p’(t)
Uy =az{ —2 —R- s
4

o /

Pr—P
P

o J

profit of chartists  fundamentalists' profit
rom ny grou
+ group

e pi(t)
Uy =a3{R— —2 - 5

P

o _/

Pr—P
P

. J

profit of chartists  fundamentalists' profit
from n_ group

R: riskfree interest rate, r: nom dividend so that r/p, = R (risk
neutrality)



Mean value dynamics

i} = ..., for x = e — 1 Sentiment index
dt n,

d — n, : .

—z=.. forz=—-"* Fraction of noise traders
dt N

d —

—P=P(ED; +ED.)= f(xzT, +Ty(1=2)(ps = p))



Results: Existence of Equilibria

Proposition 1:

(a) The mean-value dynamics of X, p and z possesses the
following stationary solutions:

(b) no stationary states with both x* # 0 and p* # pf

exist.

Proof: by mean-field approximation Absorbing
states:
relatively

Note: no more bubble equilibria!! uninteresting



Interpretation of Theoretical Results

Results for the dynamics of mean-values for the price and
the number of individuals in each subgroup:

a continuum of a stationary states exists which are
characterized by:

(1) price = fundamental value (on average),
(11) balanced disposition among noise traders
(i11) as in equilibrium noise traders and fundamentalists perform

equally well: composition of the population is indeterminate



Results: Stability of Equilibria

Proposition 2:

An equilibrium on the line (x* = 0, p* = p,, z* arbitrary)
1s unstable (repelling) if one of the following conditions 1s
violated:

(cond 1) 2z%vi(oy 'HXZ%Z*TC_])"'

+2(1-z%o3Pz*T. / pr =PI —z%)Tr <0

VzTcR
oy <l—-o3
(cond 2) vilrpys

-> from these conditions one can compute an interval of
stable equilibria: z*e(0,z]

Proof: by mean-field approximation



Simulated time series of returns

0.00 0.04 0.08 0.12 0.16
T T T

returns

1000 2000 3000 4000
time

Fraction of chartists among traders

[~ Threshold
for stability
(in first-
order

approx.)

1000 2000 3000 4000

Example of the Dynamics: returns and simultaneous development of the fraction
of chartists, z. The broken line indicates the critical value at which a loss of stability
occurs.



Interpretation of Theoretical Results... cont’d

Though the system always tends towards a stable equilibrium, it
experiences sudden transient phases of destabilization.

What happens can be understood as a local bifurcation:

due to the stochastic nature of the model there 1s always some noise
with most of the time: only minor fluctuations around the equilibrium,

however: stability of the equilibrium depends on the fraction of noise
traders present,

every once in a while, stochastic motion or extraneous forces (news!)
will push the system beyond the stability threshold: onset of severe,
but short-lived fluctuations.



Fig 1A: Price and fundamental value
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Fig. 1C: The ’input’: relative changes of fundamental value
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Typical snapshot from a simulation run. The upper panel depicts the market price p
(solid line) and the fundamental value p, (dotted line). The latter series has been shifted
vertically for better visibility. The middle and bottom panel show returns and log changes
of the fundamental value, respectively.



Stylized Facts as Emergent Phenomena in Multi-Agent Systems

Efficient Markets vs. Interacting Agents

EMH: prices immediately reflect
forthcoming news

-> gtatistical characteristics of financial
returns are a mere reflection of similar
characteristics of the news arrival
process

Interacting Agent Hypothesis: dynamics of asset
returns arise endogenously from the trading
process,

market interactions magnify and transform
exogenous news into fat tailed returns with
clustered volatility



A Stochastic Framework
for Socio-Economic Interactions

The case of two interacting populations

Assume there are two groups with members 2N and 2M
respectively and two opinions (strategies) “1” and “2” within
each group:

2M=m;+m,, 2N =n;+n,

The configuration of the overall population consists of the group
occupation numbers {m;, m,, n,;, n,} or more compactly {m, n}
m,—m, n,—n,
,N= .
2

with m=



Movements between subgroups could depend on the distribution
of “1” and “2” attitudes within the same population, but might
also be influenced by the distribution of attitudes within the
second group.

Individual transition rates might then be written as:

P =V, exp(éf‘” + x5 m+ K’”""n)z V, exp(Au""’(m,n))
pa =V, exp(—c?” — k" m— K”Vn): V., exp(— Au’“(m,n))
P, =V, exp(&" +x¥m+ lcwn)z v, exp(AuV(m,n))

Py =V, exp(—J"' —k%m-— KVVn): v, exp(— Au"(m,n))



Two interacting populations

One can again set up Master and Fokker-Planck equations for
the bi-variate {m, n} dynamics, and derive the exact law of
motion for the mean values. Their first-order approximation

leads to:

Sjnh{/iuﬂ ;, ;, ] ( ( “
*)) X

Zz = 2¥, {NSinh{au® (m, n) - nCosh{au” (m.n))}

Equivalently: dynamics for opinion indices y = m/M, x = n/N



The possibility of spillovers between groups allows for a rich
variety of outcomes. Consider the simple version:

5" =8 =0,k" =" =K,M=N,V, =V,

and define  xg* ="M, K" =xk"N.

The dynamics of the opinion indices becomes:

dm Y P W — o —
— — Smh(Km + K”Vn)— mcash(lcm + K”Vn)
4

dm Ao —  —) — ol — ——
> = Smh(lcvﬂm + Kn)— n cosh(lcvﬂm + Kn)
4



Weak within-group herding and weak positive
between-group interaction

(&)

. b}

1 -5 (] E.5 L
3

Figure 1: (a) Parameters & = 0.2 and x”* = 0.5. Weak internal agglomeration
trend and weak symmetrical reciprocal segregation trend. All fluxlines approach
thr origin (0,0) which describes the homogenous mixture of populations P*
and P” and is the only stable stationary point; (b) Parameters as in Figure
(a). 2N = 80; Unimodal stationary propability distribution peaked around the
stable origin (0, 0).

Source: Weidlich (2000), p. 90.



Weak within-group herding and strong negative
between-group interaction

(b)

Figure 2: (a) Moderate internal agglomeration trend & = 0.5 and strong recip-
rocal segregation trend & = 1.0. The two stable stationary points in the second

and fourth quadrant describe stable segregation of populations P# and P* in
separate “ghettos”. The fluxlines approach one of these stable equlibrium points;

(b) Parameters as in Figure (a), 2N = 80. The bimodal stationary probability
distribution is peaked around the stationary points.

Source: Weidlich (2000), p. 92. o=—i""=-k™



Weak within-group herding and strong asymmetric
between-group interaction

[

.

{a)

(b)

"
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Figure 3: (a) Moderate internal agglomeration trend k and strong asymmetric
interaction k* = —1.0 and k" = +1.0. There exists one stable focus, the
orgin (0,0) into which all fluxlines spiral; (b) Parameters as in (a), 2N = 80.
The unimodal stationary probability distributions is peaked around the stable
focus (0,0).

Source: Weidlich (2000), p. 93.



Strong within-group herding and strong negative
between-group interaction

@

Figure 4: (a) Very strong internal agglomeration trend £ = 1.2 and strong
asymmetric interaction £ = —1.0 and &* = +10. The orgin (0,0) is an
unstable focus. All fluxlines approach a limit cycle.

Source: Weidlich (2000), p. 94.
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Figure 5: (b) Parameters in Fig.4(a), 2N = 80. The quadrumodal stationary
probability has four maxima corresponding to metastable situations and ridges
between the maxima along the limit cycle; (¢) Parameters as in Fig.4(a) and (b).
example of stochastic trajectory belonging to transition rates. The trajectory
abides around the metastable points of maximal probability and traverses at

fast pace the states between the metastable situations.

Source: Weidlich (2000), p. 95.
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Estimation: for a time series of
discrete observations X  of our

canonical process, the likelihood

fun T—1
—log fo(Xo | ) — Z logf{XNep1 | Ne 0]

"/

with discrete observations X, the Master or FP
equations are the exact or approximate laws of
motion for the transient density and allow to evaluate

log f(X..1|Xs,0) and , therefore, to estimate the
parameter vector 6 (6 = (v, ay,a,)")!



Implementation

* Usually no analytical solution for transient pdfs
from Master or FP equations

* Numerical solution of Master equation too
computation intensive if there are many states x
(1.e., particularly with large N)

* Numerical solutions of FP equation 1s less
computation intensive, various methods available
for discretization of stochastic differential equations



Finite Difference Approximation

. | Space-time grid:
X +Jh, t, + 1k

2
op, O 0
= X + — X
5 o MOPx P g(x)px
P1j+ —Pﬁ' _ uj+1pﬁ'+1 = lvljplj N gj+1pﬁ+1 —Zgjpﬁ' +gj—1P}—1
k h h2
pi-p}! _BjiPi THiPG  BIPie1 —28 P+ 8 1P
k h h2

forward
difference

backward
difference



Numerical Solution of FPE

« Forward and backward approximations are of first-order
accuracy: combining them yields Crank-Nicolson scheme
with second-order accuracy -> solution at intermediate points
(i+1/2)k and (j+1/2)h

e This allows to control the accuracy of ML estimation:
estimates are consistent, asymptotically normal and

asymptotically equivalent to complete ML estimates
(Poulsen, 1999)



Finite Difference Approximation of Transitional Density

- \
Observation X, |
approximated by sharp )

Normal distr. \

Time interval [s, s+1]

Evaluation of
Lkl of observation X,



Monte Carlo Experiments

* Does the method work 1n our case of a potentially
bi-modal distribution, 1s 1t efficient for small
samples?

* Do we have to go at such pains for the ML
estimation? Couldn‘t we do 1t with a simpler
approach (Euler approximation)?



Applicability to our famework: check the order of accuracy

Denote by v,, v,, v; the approximation errors from
expansions using step sizes k and h, h/2, h/4

1 f—he —kd— b2 — Em \
vo — [ — 0.5he — kd — 025021 — 12m + ... (5)
va — f— 0.25he — kd — 00625521 — Em + .. (6)

vp— U1 o ct 1.5A First order: the ratio is ~2,
tg — 19 o075

Second order: 1t yields ~4



ot 025 05 075 1 125 1.5 L7502
S0.75 0 400 400 39 40 400 40 1.0 3.9
-U.5 4.0 1.0 4.0 1.0 4.0 1.0 1.0 4.0
-0.25 1 40 40 40 40 40 40 40 4.0
L 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.25 1.0 40 40 40 40 40 40 4.0
0.5 4.0 1.0 4.0 1.0 4.0 1.0 1.0 4.0
(.75 4.0 40 39 40 4.0 40 40 39
h-ratio
ot 025 05 075 1 125 1.5 L7502
-0.75 | 40 39 40 40 40 40 4.0 4.0
-U.5 3.9 1.0 4.0 1.0 4.0 1.0 1.0 4.0
-0.25 1 39 40 40 40 40 40 40 4.0
() fi. 1 4.0 4.0 1.0 4.0 1.0 1.0 4.0
(.25 3.9 1.0 4.0 1.0 4.0 1.0 1.0 4.0
0.5 3.9 1.0 4.0 1.0 4.0 1.0 1.0 4.0
(.75 1.0 40 40 40 40 40 40 4.0

li-ratio

&

Procedure works
as expected,
even for bi-
modality

Table 1: Order determination for the Crank-Nicolson method applied to the

mteracting agent model. All parameter values and settings like in Fig. |



Monte Carlo Study of MLE with Crank-

Nicolson Approximation

Fler (rank-Nicolson (Crank-Nicol=on
k=1/8 E—1/16
i iy 1] iy i i iy irq

LGA2 | 2,050 -0.000  0.793 ] 2,023 -0.000  0.794
LOS2 1 0567 0005 0,028 | 0585 0,005 0.028
2003 0.007 0166 | 0564 0.005 0028 1 0,583 0,005 0,028
1123 2992 0216 0.772 | 3547 0211 0.752
LT | LO046 0057 0,105 ] 1422 0,038 0.069

— G =0, 1S )
' )
ean 0439 (.57 )
! : WNMSE 25610 0,390 JGYs | 1.0 0059  0.10s | 1517 0039 0.071
el 1019 o000 | 174 | 2.880  (.000) 1196 | 2,952 0.000 1. 196
w-;:-.-,u 16 0020 005t |omT o
IR \[SI 1013 0.020 0.043 | 0460 0.
)
)
)

0,999 -0.001
0.091  0.007

(
[
[
[
[
[

]

[
| 09 0.015 | 0499 0,008  0.015
( 09 0.016 | 0.499 0,009 0.015
(
(

e 09 17 0608 11360 090 113 1178 095 110
‘r-;:-slc 0026 0350 0426 | 0215 0127 0150 ] 0430 0128  0.159
o, = 1.2 OMSE 2768 1580 1.045 | 1326 0141 0175 | 1326 0135 0.168

Table 3: Approximate ML Estimates

— —




Results from Experiments

Crank-Nicolson has expected order of accurary,
works well in ML estimation

Modest number of time steps (k) sufficient for high
accuracy

Implicit FDs have practically the same peformance
as CN

ML estimation also works well with endogenous N



Empirical Application

* The framework of the canonical model 1s close to
what 1s reported 1n various business climate indices
o Germany: ZEW Indicator of Economic Sentiment,
Ifo Business Climate Index

« US: Michigan Consumer Sentiment Index,
Conference Board Index



ZEW Index of Economic Sentiment, 1991 — 2006,

Monthly data, index = #positive - # negative, ca. 350 respondents

ZEW Index, 1991 — 2006
<
— N
O
(@) \
ol| v
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<
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-0.06 0.00
y
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1% a, a; a, 03 N ML |AIC
Model 1 078 | 001 | 1.19 official: | -726.9 | 1459.8
(baseline) | (0.06) | (0.01) | (0.01) 33072
Model 2 0.15 | 0.09 | 0.99 2121 | -655.9 | 1319.7
(end. N) 0.07) | (0.06) | (0.14) (9.87)
Model 3 0.13 | 0.09 | 093 | -4.55 1923 | -650.4 | 1310.9
(feedback | (0.06) | (0.07) | (0.16) | (2.53) (8.78)
from IP)
Model 4 0.14 | 0.10 | 091 211 | 2724 | -627.5 | 1265.1
(moment.) | (0.05) | (0.06) | (0.14) 0.76) | (9.63)
Model 5 0.12 | 011 | 086 | 2.82 | 223 | 2512 | -624.9 | 1261.94
(mom. + IP) | (0.05) | (0.06) | (0.16) | (1.65) | (0.81) | (8.95)




Extensions of Baseline Model

" introduction of exogenous variables (industrial production,
interest rates, unemployment, political variables,...)

" ‘momentum’ effect

» endogenous N: ‘effective’ number of independent agents



... a few simulations of model V
(1dentical starting value of x, identical
influence from IP
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For comparison: simulations of model I
(1dentical starting value of x) -> no similarity
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Specification tests: Mean and 95% confidence

interval from model 3

(conditional on initial condition and influence
form IP)
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Mean and 95% confidence interval from
model 1
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...are the large shifts of opinion in harmony with the estimated

model? 95% confidence interval from period-by-period iterations
(model V)

(conditional on previous realization and influence form IP)
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~49.7

B Data

B model 1

B model 2

H model 3

B model 4

¥ model 5

mean std. dev sk kurtosis rel. Deviation distance d

Moments: Data vs Simulated Models (average of 1000
simulations)
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Autocorrelations: Data vs Simulated Models (average of
1000 simulations)




Conclusions

¥ evidence for interaction effects in ZEW index (o, = 1)

' no significant bias, slow development (v small)
 effective system size < nominal size (degree of complexity)
M some (limited) evidence of interaction with macro data

M 1nteraction effects are dominant part of the model

v we can identify the formation of animal spirits and track their
development



Avenues for further research

» other time series: in economics, finance (investor sentiment),
politics, marketing

» estimating combined models with joined dynamics of opinion
formation and real economic activity

» check for system size effects: correlations in individual
behavior (micro data) ?

» indirect identification of psychological states from economic
data



