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Agent-Based Models in Economics and Finance: 

Schedule

Stochastic Models of Interacting Agents: Structure and 
Quantitative Modeling Concepts

a. The Master Equation Formalism: Stationary Solutions and Transient 

BehaviorBehavior

b. Dynamics of Means and Higher Moments 

c. Heterogeneous Beliefs and Asset Price Dynamics

d. Artificial Markets with Herding and Strategy Choice

e. Estimation of Stochastic Agent-Based Models



� similar to a discrete choice with social interactions 

(Brock/Durlauf), but dynamic framework and consideration 

of finite populations (no thermodynamic limit)

� we might dispend with utility maximization and simply 

A Stochastic Framework

for Socio-Economic Interactions

� we might dispend with utility maximization and simply 

formulate dynamic behavioral models of the time 

development of agents’ decisions or activities

� since we cannot fully capture agents’ idiosyncratic 

behavioral elements we adopt a stochastic approach of 

agents’ choices



� adopters and non-adopters of a technology

� fundamentalists versus chartists, bears versus bulls in 

financial markets

Motivating examples

� supporters of government and opposition 

� followers and non-followers of fashion



We consider a population with a binary set of choices or opinions 

(denoted by "+" and "-"):

The socio-economic configuration at any point in time can be 

characterized by:

A Stochastic Framework

for Socio-Economic Interactions
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� We assume that the dynamics can be captured by 

certain transition probabilities for agents to move 

from the “+” to the “-”group and vice versa, p-+ and 

p+- . 

� This means that the population composition follows 

a stochastic process (which might have systematic a stochastic process (which might have systematic 

components which enter via the specifications of p-+

and p+- ). 



A complete characterization of the process requires to solve 

for the probability distribution at any point in time, t, over 

all possible states, n or x:
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These time-dependent distributions might or might not 

converge to a stationary distribution for t→∞.
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Dynamics: the probabilities to find the  system in states n (or x) 

change over time according to the probabilities for 

movements of single individuals. For example, the 

configuration might change from n to n+1 or n-1 with one 

agent moving to another group with probabilities:

assuming that there is an influence of the overall configuration n

on individuals’ propensities to move between groups and that 

it is only the overall number of agents in the “+” and “-”  

groups, that influences these decisions.



We assume that time is continuous and that individual switches

can be formalized via asynchronous Poisson processes in

continuous time. We can, then, specify the dynamic process

more formally via conditional probabilities, e.g.

ω(n+1,t+∆t|n,t), ω(n-1,t+∆t|n,t), etc. and in the limit ∆t→0

we define:

Transitions in Continuous Time: Jump Markov Processes

).n(w)t,n1n(w
t

)t,ntt,1n(
lim

),n(w)t,n1n(w
t

)t,ntt,1n(
lim

0t

0t

↓→

↑→

=−=
+−

=+=
++

∆
∆ω

∆
∆ω

∆

∆



For ∆t→0 two or more simultaneous movements of 

individuals become increasingly unlikely and the 

probability for one individual to change his mind 

converges to λ∆t with λ the transition rate of the 

Poisson process. The Poisson transition rates for the 

population process are, therefore, given by: population process are, therefore, given by: 

w(n+1|n,t) ≡ w↑(n)=n-p+- and 

w(n-1|n,t) ≡ w↓(n)=n+p-+.



Reminder: the Poisson distribution counts the number 

of events during a time interval. For a Poisson rate λ

we get: 
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For ∆t -> 0, only the first term of P1(∆t ) needs to be considered 

since simultaneous movements of agents become increasingly 

unlikely. �ote, however, that our ‘λ’ might be state-dependent 

and nonlinear!



The overall evolution of the system is characterized by 

the time change of the probabilities over all states. 

In general, this amounts to a system of difference 

equations for all possible system configurations n 

(the Master equation):(the Master equation):
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Master Equation in Continuous Time

In the continuous-time limit we get the vector differential equation:
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for the probability flux. Note that in the continuous-

time limit, transition probabilities ω(.) have been 

replaced by transition rates w(.) on the right-hand side 

of the Master equation.



In our case of Poisson jump processes of single agents, we can 

restrict attention to neighboring states, n’ = n ± 1:
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Assuming that the transition probabilities of individuals do not 

depend on the raw numbers, but rather on the ratio of members 

of both groups, we can also express the dynamics in terms of 

the opinion index x.

Since ∆n = 1 corresponds to ∆x = 1/�, we get:
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Master equation for opinion index x:



Since for large �, x is close to a continuous quantity, we can

perform a Taylor expansion with respect to ∆x. Rearranging 

gives:

The Fokker-Planck Equation as a Taylor Series 

Expansion of the Master Equation
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A second-order approximation of the first and second group of 

components on the right-hand side around x yields:
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Fokker-Planck equation



The Fokker-Planck Equation

The FP equation consists of two terms:

� the drift term for the systematic (mean-value) part of the 

dynamics
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� the diffusion term for the fluctuations around the expected 

value:



• the Fokker-Planck equation maintains only terms up to

second order, so that it amounts to a Gaussian

approximation of the ‘true’ probability distribution at time t

(nevertheless, the time evolution leads to different shapes of

the transient and stationary distributions),

• for simple drift and diffusion functions, it might be possible

Remarks

• for simple drift and diffusion functions, it might be possible

to solve explicitly for the stationary distribution from

dP(x;t)/dt = 0,

• in general, the Fokker-Planck equation can be analyzed and

simulated more easily than the master equation,

• the �2 dependence of the diffusion term in our setting is a

consequence of the law of large numbers.



The expected value of x at time t is given by:

and its change in time is obtained from the Master equation:

Derivation of Macroscopic Laws of Motion 

from the Microdynamics
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With a few simple manipulations we get:
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ax,1 is the so-called first jump moment which, in our framework, 

coincides with the drift term of the Fokker Planck equation:
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The change in time of the expected value of x is, therefore, 

given by the expectation of ax,1 , i.e., the average jump of x

weighted by the probability of x at time t, P(x;t):
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First-order approximation of the mean-value dynamics 

yields:

which is exact if the first jump moment is linear in x.

Approximation of mean-value equation:

   )x(a
dt

xd
1,x
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A second-order approximation adds a correction term 

depending on the fluctuations:



Simple example: birth/death dynamics

With λ, µ: birth and death rates, �: maximum population, 

carrying capacity of environment

Master equation:

First jump moment:
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Mean values in first-order approximation:

In concentrations, x = n/N, we get:
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Second-order approximation:

Leads to:
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2nd Example: a pure social dynamics or herding process

With v: frequency of jumps, α0: bias, α1: herding intensity.

Inspiration:Inspiration:

Discrete choice (in economics):

Particle dynamics (in physics): magnetization etc.
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The population transition rates are:
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The first jump moment is:
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Using the hyperbolic trigonometric functions, the first-order 

approximation to the mean-value dynamics becomes:

Stationary states are obtained from:

) x)Cosh(αx)xν(Tanh(α2
dt

xd
  1010

t αα +−+=

Features:

• unique stable steady state x*  for α0 small, α1≤ 1,

• multiple steady states x±* ≠ 0 for α0 small, α1 > 1 , the formerly 

unique steady state x*  becomes unstable.
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Various cases of the stochastic herding model 



Examples of Transient Densities from Fokker-Planck Equation



Second-order approximation:
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To implement the correction term, we need information about 

the time evolution of the variance!

2



Dynamics of Second Moments
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Similarly as with first moments, we see that the second 

moment is time dependent and its evolution can be obtained 

via the Master equation: 
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Defining the second jump moment:

We arrive at the exact dynamics of the second moment of x:
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The dynamics of the variance is obtained as:



Again we apply a Taylor series expansion around 

the current expectation:
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If both ax,1 and ax,2 are linear, the last line is again exact, if 

not, it is an approximation up to the first order.



1st example: birth-death process
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We arrive at a simultaneous system of equations:

with or with or 

without: first 

vs. second 

order!



Variance in equilibrium for first-order approximation:
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… gets more complicated in simultaneous solution, but for 

large N is numerically not too different:large N is numerically not too different:

Example: λ= 1, µ = 2 x* (first 

order)

σx
2 x*

(second 

order)

σx
2

N=200 0.5 0.0025 0.4949 0.002513

N=20 0.5 0.025 0.4375 0.02734



2nd example: herding model
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which is the diffusion term D(x) from the Fokker-Planck 

equation.equation.

We arrive at (for α0=0, α1 = α):



The variance in a steady state, x*, is obtained via:
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Mean value equilibria and stationary variances for varying α1 

(α0 = 0) 



2*σ

5 samples of herding model: N = 200; α0 = 0; α1 = 1.1; v = 1

Mean value 

equlibria

Remark: variance is local, covers only fluctuations within basin 

of attraction



Transient 

mean value 

dynamics

Transient variance 

dynamics

5 samples of herding model: N = 500; α0 = 0; α1 = 1.2; v = 1,

Initial condition: x0 = -0.04

dynamics



The ‘+’ and ‘-’ groups are now identified as bullish and 

bearish speculators.

Transition probabilities account for:

� bias

� herding

A Financial Market Model

� herding

� reinforcement of herding by momentum

Note: 1/v is mean time between changes of opinion



Dynamics of sentiment index x:
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Price dynamics from chartist-fundamentalist literature:

β: price adjustment speed, ED: excess demand



Chartists are the bullish/bearish agents:

tc: fixed trading volume per agents.

Fundamentalists  have standard excess demand function:Fundamentalists  have standard excess demand function:

Dynamic system (in mean values to first-order approximation)
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Dynamic equilibrium:

Stationary states are obtained from:
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Features:

• unique steady state x* = 0 for α0 small, α1≤ 1, together with price 

equal to fundamental value

• multiple steady states for α0 small, α1 > 1 , two symmetric stable 

staedy states x±* ≠ 0 for α0 = 0,  together with steady state prices 

deviating from fundamental value (bubble equilibria)









Stability conditions:
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Beyond mean values: are there some interesting results in higher 

moments?

… the system we have formulated is a mixture of stochastic and 

deterministic components:

v
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dQ(x,p;t)/dt = inflow from other states - outflow from {x, p}

=   (wxx'(t) Q(x',p;t) - wx'x(t) Q(x,p;t))

+  (wpp'(t) Q(x,p';t) - wp'p(t) Q(x,p;t))

Exact solution: bi-variate Master equation:

wii'(t): transition rate in t for a transition from i' to i (i = x,p)

… where I assume that x and p do not move simultaneously 

(otherwise we would have to consider additional terms of 

format wxx‘pp’(t) Q(x',p’;t) )



Mean value equations:

… leads to :
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…same 

for p



Taylor series expansion:
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First-order approx.

Second-order correction



For the implementation we need a stochastic formalization of the 

price process:

• we assume an iid distributed liquidity component µ in excess 

demand with expectation 0

• prices change by one basic unit as a Poisson process with 

probabilities:
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it follows that:

)T)pp(Tx(EDp
dt

d

EDw)p'p(a 

ffc

'x

p'p1,p

−+==⇒

=−= ∑

ββ

β

Note: 

� first order approx. of price equation is already exact because 

of linearity!

� the first order  approximation to the bi-variate stochastic 

model coincides with our previous heuristically motivated x-p-

dynamics



Second moments:
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Second moments…cont’d:
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Exact equations of variances and covariances:
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First-order approximation to (co)variance dynamics:
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Closed system of 5 equations in 1st and 2nd moments!



Insights

• Variance equations from agent-based models 

generically contain autoregressive elements: 

nonlinear dynamics in 2nd moments, ARCH effects 

(Ramsey, 1996)

• Analysis of variances in stationary state, transient 

dynamics etc



• We can solve for stationary variances and covariances 

around the fundamental and bubble equilibria from our 

system 

cycles



Same behavior for all 2nd moments!



Transient Dynamics

• Shock to fundamental value: overshooting and mean 

reversion

• Goes along with predictable variation in volatility: 

decrease of volatility upon impact, oscillatory decrease of volatility upon impact, oscillatory 

reversion to steady state level





Volatility shocks: persistence



Variances in Oscillatory Regime

• Cyclical variation of 2nd moments along the cycle

• Different degrees of predictability in different 

market phases

• Secular increase of theoretical variances because of 

random phase shifts



Variances in Oscillatory Regime





A Richer Framework (Lux and Marchesi, 1999, 2000)

As before:

� different types of traders: "noise traders" and "fundamentalists"

� noise traders rely on: charts (price trend) and flows (behavior of others)

� traders formulate demand and supply, market maker adjusts the price in the usual

mannermanner

New features:

� traders compare profits gained by noise traders and fundamentalists and switch to
the more successful group.

� changes of the (log of the) fundamental value follow a Wiener process: ln(pf,t) =
ln(pf,t-1) + εt∆t with εt ∼ N(0, σε)

-> news arrival process exhibits neither fat tails nor clustered volatility



still: changes of behavior occur according to state-dependent transition 

probabilities: 

this means: during a small time increment ∆t, one individual will switch   

between behavioral alternatives (i and j, say) with probability: πij(t) ∆t

time
t=1 t=2

asynchronous reactions of

individual agents:



(1) switches of noise traders between optimistic and 

pessimistic 

(2) adjustment of the price [by one elementary unit, e.g. one 

cent] depending on imbalances between demand and 

supply.

transition probabilities:

p +- = v1 exp(U1) and p -+ = v1 exp(-U1),

∫∫
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New component:

switches between noise traders and fundamentalists depending on 

comparison of profits: 

actual profits gained by chartists: capital gains (or losses) vs. 

expected profits of fundamentalists: percentage difference between

prevailing price and assumed fundamental value

transition rates:

π nf = v2 exp(U2) and π fn = v2 exp(-U2),

with: U2 = α3 * profit differential
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Profit differentials in transition rates between noise trading and 

fundamentalism:
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R: riskfree interest rate, r: nom dividend so that r/pf = R (risk 

neutrality)



Mean value dynamics
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Proposition 1: 

(a) The mean-value dynamics of x, p and z possesses the 

following stationary solutions:

(i) x* = 0, p* = pf with arbitrary z,

(ii) x* = 0, z* = 1 with arbitrary p,

Results: Existence of Equilibria

(iii) z* =  0, p* = pf with arbitrary x;

(b) no stationary states with both x* ≠ 0 and p* ≠ pf   

exist.

Proof: by mean-field approximation Absorbing 

states: 

relatively 

uninterestingNote: no more bubble equilibria!!



Interpretation of Theoretical Results

Results for the dynamics of mean-values for the price and 
the number of individuals in each subgroup:

a continuum of  a stationary states exists which are 
characterized by:

(i)   price = fundamental value (on average),

(ii) balanced disposition among noise traders

(iii) as in equilibrium noise traders and fundamentalists perform 

equally well: composition of the population is indeterminate



Proposition 2:

An equilibrium on the line (x* = 0, p* = pf, z* arbitrary) 

is unstable (repelling) if one of the following conditions is 

violated:

(cond 1)

Results: Stability of Equilibria

2z* v (
v

z* T 1)1 1 2
1

cα α
β

+ − +

(cond 2)

-> from these conditions one can compute an interval of 

stable equilibria:

Proof: by mean-field approximation
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Example of the Dynamics:Example of the Dynamics: returns and simultaneous development of  the fraction returns and simultaneous development of  the fraction 

of chartists, z. The broken line indicates the critical value at which a loss of stability of chartists, z. The broken line indicates the critical value at which a loss of stability 

occurs.occurs.

Threshold 

for stability 

(in first-

order 

approx.)



Interpretation of Theoretical Results… cont’d

Though the system always tends towards a stable equilibrium, it  

experiences sudden transient phases of destabilization.

What happens can be understood as a local bifurcation: 

due to the stochastic nature of the model there is always some noise

with most of the time: only minor fluctuations around the equilibrium,with most of the time: only minor fluctuations around the equilibrium,

however: stability of the equilibrium depends on the fraction of noise

traders present,

every once in a while, stochastic motion or extraneous forces (news!)
will push the system beyond the stability threshold: onset of severe,
but short-lived fluctuations.



Typical snapshot from a simulation run. The upper panel depicts the market price p 

(solid line) and the fundamental value pf (dotted line). The latter series has been shifted 

vertically for better visibility. The middle and bottom panel show returns and log changes 

of the fundamental value, respectively. 



Stylized Facts as Emergent Phenomena in Multi-Agent Systems

Efficient Markets vs. Interacting Agents

EMH: prices immediately reflect

forthcoming news

-> statistical characteristics of financial     

returns are a mere reflection of similar 

characteristics of the news arrival      characteristics of the news arrival      

process

Interacting Agent Hypothesis: dynamics of asset 

returns arise endogenously from the trading 

process, 

market interactions magnify and transform

exogenous news into fat tailed returns with 

clustered volatility



A Stochastic Framework

for Socio-Economic Interactions

The case of two interacting populations

Assume there are two groups with members 2� and 2M

respectively and two opinions (strategies) “1” and “2” within 

each group:

   , 2121 nn�2mmM2 +=+=

The configuration of the overall population consists of the group 

occupation numbers {m1, m2, n1, n2} or more compactly {m, n}

with .
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Movements between subgroups could depend on the distribution 

of “1” and “2” attitudes within the same population, but might 

also be influenced by the distribution of attitudes within the 

second group. 

Individual transition rates might then be written as:



Two interacting populations

One can again set up Master and Fokker-Planck equations for 

the bi-variate {m, n} dynamics, and derive the exact law of 

motion for the mean values. Their first-order approximation 

leads to:

Equivalently: dynamics for opinion indices y = m/M, x = n/N



The possibility of spillovers between groups allows for a rich 

variety of outcomes. Consider the simple version:

, , ,~ ,0 νµ
ννµµνµ κκκδδ VV�M ======

and define .~ ,~ �M νµνµµνµν κκκκ ==

The dynamics of the opinion indices becomes:The dynamics of the opinion indices becomes:
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Weak within-group herding and weak positive 

between-group interaction



Weak within-group herding and strong negative 

between-group interaction

νµµν κκσ ~~~ - =−=



Weak within-group herding and strong asymmetric 

between-group interaction



Strong within-group herding and strong negative 

between-group interaction





Estimation: for a time series of 

discrete observations Xs of our 

canonical process, the likelihood 

function reads

with discrete observations Xs, the Master or FP 

equations are the exact or approximate laws of 

motion for the transient density and allow to evaluate 

log f(Xs+1|Xs,θ) and , therefore, to estimate the 

parameter vector θ (θ = (v, α0,α1)‘)!



• Usually no analytical solution for transient pdfs 
from Master or FP equations

• Numerical solution of Master equation too 
computation intensive if there are many states x 

Implementation

computation intensive if there are many states x 
(i.e., particularly with large N)

• Numerical solutions of FP equation is less 
computation intensive, various methods available 
for discretization of stochastic differential equations



Finite Difference Approximation
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Numerical Solution of FPE

• Forward and backward approximations are of first-order 

accuracy: combining them yields Crank-�icolson scheme 

with second-order accuracy -> solution at intermediate points 

(i+1/2)k and (j+1/2)h(i+1/2)k and (j+1/2)h

• This allows to control the accuracy of ML estimation: 

estimates are consistent, asymptotically normal and 

asymptotically equivalent to complete ML estimates 

(Poulsen, 1999)



Observation Xs,

approximated by sharp 

Normal distr.

Time interval [s, s+1] Evaluation of

Lkl of observation Xs+1



Monte Carlo Experiments
• Does the method work in our case of a potentially 

bi-modal distribution, is it efficient for small 

samples?

• Do we have to go at such pains for the ML 

estimation? Couldn‘t we do it with a simpler 

approach (Euler approximation)?



Applicability to our famework: check the order of accuracy

Denote by v1, v2, v3 the approximation errors from 

expansions using step sizes k and h, h/2, h/4

First order: the ratio is ~2,

Second order: it yields ~4



�
Procedure works 

as expected, as expected, 

even for bi-

modality



Monte Carlo Study of MLE with Crank-

Nicolson Approximation

v =3, α0 = 0, 

α1 = 0.8

α0 = 0.2, 

α1 = 0.8α1 = 0.8

α0 = 0,

α1 = 1.2

α0 = 0.2, 

α1 = 1.2

�



Results from Experiments
• Crank-Nicolson has expected order of accurary, 

works well in ML estimation

• Modest number of time steps (k) sufficient for high 
accuracyaccuracy

• Implicit FDs have practically the same peformance 
as CN 

• ML estimation also works well with endogenous N



Empirical Application
• The framework of the canonical model is close to 

what is reported in various business climate indices

• Germany: ZEW Indicator of Economic Sentiment,

Ifo Business Climate Index

• US: Michigan Consumer Sentiment Index, 

Conference Board Index

• ....



ZEW Index of Economic Sentiment, 1991 – 2006,

Monthly data, index = #positive - # negative, ca. 350 respondents



v α0 α1 α2 α3 � ML AIC

Model 1

(baseline)

0.78

(0.06)

0.01

(0.01)

1.19

(0.01)

official: 

350/2
-726.9 1459.8

Model 2

(end. N)

0.15

(0.07)

0.09

(0.06)

0.99

(0.14)

21.21

(9.87)

-655.9 1319.7

Model 3 0.13 0.09 0.93 -4.55 19.23 -650.4 1310.9

(feedback 

from IP)

(0.06) (0.07) (0.16) (2.53) (8.78)

Model 4

(moment.)

0.14

(0.05)

0.10

(0.06)

0.91

(0.14)

2.11

(0.76)

27.24

(9.63)

-627.5 1265.1

Model 5

(mom. +  IP)

0. 12

(0.05)

0.11

(0.06)

0.86

(0.16)

-2.82

(1.65)

2.23

(0.81)

25.12

(8.95)

-624.9 1261.94



Extensions of Baseline Model

� introduction of exogenous variables (industrial production, 

interest rates, unemployment, political variables,…)

� ‘momentum’ effect

)xx(IPxU 1tt32t10t −−+++= αααα

� ‘momentum’ effect

� endogenous N: ‘effective’ number of independent agents



... a few simulations of model V

(identical starting value of x, identical 

influence from IP



For comparison: simulations of model I

(identical starting value of x) -> no similarity



Specification tests: Mean and 95% confidence 

interval from model 3
(conditional on initial condition and influence 

form IP)



Mean and 95% confidence interval from 

model 1



…are the large shifts of opinion in harmony with the estimated 

model? 95% confidence interval from period-by-period iterations 

(model V)

(conditional on previous realization and influence form IP)
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Conclusions
� evidence for interaction effects in ZEW index (α1 ≈ 1)

� no significant bias, slow development (v small)

� effective system size < nominal size (degree of complexity)

� some (limited) evidence of interaction with macro data� some (limited) evidence of interaction with macro data

� interaction effects are dominant part of the model 

� we can identify the formation of animal spirits and track their 
development



Avenues for further research
� other time series: in economics, finance (investor sentiment), 

politics, marketing

� estimating combined models with joined dynamics of opinion 
formation and real economic activity

� check for system size effects: correlations in individual 
behavior (micro data) ?

� indirect identification of psychological states from economic 
data


