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1 Introduction

This lecture concludes our coverage of non-renewable resources by looking at
externalities, exploration, resource scarcity and rent capture.
An appendix also presents an outline of the use of the Hamiltonian func-

tion in the analysis of dynamic optimisation problems. This will be useful
when we turn our attention to renewable resource exploitation.

2 Externalities

External costs or externalities are costs that are incurred, in this case, in
the process of extracting a natural resource, but which are not borne by the
extracting �rm itself. These costs may be incurred by other �rms within the
industry, by �rms in other industries, or by individuals. They may a¤ect
only a relatively local area (around a mine, for example) or there may be
a geographically more extensive e¤ect. When the external costs of an ac-
tivity are borne widely within society, we often talk about social costs. A
good example of an externality in the context of non-renewable resources is
the pollution of air or water by harmful substances used or released in the
extraction process. In this case the costs imposed (in the form of impacts
upon people�s health, for example) cannot be measured directly since there is
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(normally) no market for pollution or for good health. In general, the mag-
nitude of such costs must be estimated using various non-market valuation
techniques.
As a general principle, and provided that it is possible to measure (esti-

mate) the relationship between, say, a pollutant and its harmful e¤ect upon
individuals, there is a trade-o¤ between the bene�ts of allowing some pollu-
tion to occur (through cost savings in the extraction process) and the social
costs of allowing that pollution. If we have full information about costs
and bene�ts, we know that the optimal quantity of pollution is where the
marginal bene�t of allowing pollution to occur is just equal to the marginal
(social) cost of pollution, i.e.,

MB (P ) =MC (P ) :

Since it is usually the case that marginal bene�ts are decreasing in P while
marginal costs are increasing in P , any more pollution would increase costs
more than bene�ts but any less pollution would reduce bene�ts more than
costs. Note that determining a socially optimal quantity of pollution does
not imply that the costs and bene�ts of pollution are then distributed fairly
between polluters and others within society!
Let z be a pollutant generated by extraction in proportion to the quantity

extracted q. Assume that z � �q where � is some positive number, but
normalise � to 1 so that we simply have z = q. A social planner would wish
to modify a private �rm�s objective function toZ T

0

[pq � c (q; x)� d (z; a)� � (a)] e�rtdt;

where d (�) is a damage function that gives the current social costs of the harm
caused by the pollutant z and a represents abatement of the pollutant which
can be achieved at a cost � (a). The (current value) �rst order conditions of
an appropriate Lagrangian with respect to q and a are now

p� cq � dz � � = 0 (1)

and
�da � �a = 0: (2)

Our rule for current extraction is now

p� cq = �+ dz; (3)

so that, in order for extraction to be socially optimal, we need to take into
account the current costs of extraction in terms not only of the impact on
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pro�ts in the future but also the marginal social costs of the resulting pollu-
tion. At the same time, we should observe the rule

�a = �da; (4)

which states that we should incur costs to abate (reduce) the level of pollution
generated up to the point where the marginal cost of abatement equals the
marginal reduction in the social costs of pollution.1

If we write d (�) as d (z � a) then dz = �da and we can put (3) and (4)
together to obtain

p� cq � �a = �;
which we could describe as the decision rule for a socially responsible �rm
(with perfect information). Assuming that d (�) does not a¤ect the �rm
directly, however, a pro�t-maximising �rm clearly has an incentive to set
� (a) = 0. How can we force the �rm to incur abatement costs? We could
use a pollution tax set at an appropriate level, we could impose standards
to control the level of pollution, backed up with a system of inspections and
penalties, or we could issue permits allowing a certain level of pollution which
�rms could trade between themselves in order, individually, to achieve the
most e¢ cient combination of permits and abatement for legal operation. In
each case, the aim of the regulation is to make �rms internalise the social
costs of their pollution-generating activities.2

Note that we have here assumed that social costs are incurred only as a
result of the (short run) e¤ects of the �ow of pollution. In some cases, if the
pollutant is a long-lived substance, we also need to consider the e¤ects of the
stock of the pollutant. HSW (p.251) present an analysis that includes both
�ow and stock e¤ects.3

3 Exploration

The search for new reserves is costly and, inevitably, subject to considerable
uncertainty. Exploration, or prospecting, for new reserves incurs costs which
must be deducted from the expected (net present) value of a reserve, which
is itself uncertain. Firms therefore have an incentive to target areas with the
lowest exploration costs �rst. New discoveries may not be developed immedi-
ately, but, depending upon extraction costs, extraction may be delayed until

1If abatement is very costly, the �rm may �nd it pro�table instead to reduce the rate
of extraction in order to reduce the level of pollution. Assume here that the price is high
enough that it is always cost-e¤ective to undertake abatement activities.

2This is a big topic in itself. Take a look at Chapters 3-5 in HSW.
3See also Chapter 6 of Conrad.
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prices rise su¢ ciently (or technological advances reduce extraction costs).
This is analogous to the idea of a backstop resource which only becomes
available when prices reach a certain level.
Even the simplest analytical models of exploration are quite complex and

are really beyond the scope of this course. For those interested, HSW present
two alternative models of exploration in Section 8.4.

4 Scarcity

The notion of resource scarcity seems straightforward at �rst. But if we
consider that a non-renewable resource may exist in plentiful quantities in
the ground, but not necessarily in places and in concentrations where it is
relatively easy to extract, we can begin to see that simple physical de�nitions
of resource scarcity are perhaps not very useful. In addition, a resource
cannot really be said to be scarce if there is little or no demand for it at a
price at which someone would �nd it pro�table to extract and supply it.
An economic de�nition of scarcity therefore needs to take into account

prices and costs. Broadly speaking, from an economic perspective a resource
becomes more scarce, all else equal, if demand (and hence the market price)
increases and less scarce if demand decreases, perhaps because of the ap-
pearance of close substitutes for the resource. What is less intuitive is that
economic scarcity can be said to decrease if the costs of extraction increase.
If extraction costs are rising faster than prices, then the implication is that
society (the market) does not regard the resource as more scarce.
Recall that, along an e¢ cient extraction path, the shadow price or value �

of the resource stock equals the di¤erence between price and marginal costs:

� = p� cq:
The shadow price is usually regarded as the correct measure of economic
scarcity. Remember that the shadow price depends upon prices and costs
throughout the lifetime of the resource (including the backstop price), whereas
price and marginal cost are current values. A trend in the shadow price,
rather than a point value, is the best indicator of resource scarcity. If the
shadow price is increasing, the resource is, in economic terms, becoming
more scarce. Because the shadow price depends upon both prices and costs,
changes in prices or costs alone are di¢ cult to interpret as indicators of re-
source scarcity. For example, since

_p = _�+ _cq;

depending on the value of _cq, it is clearly possible for _p and _� to have opposite
signs.
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5 Rent capture

Natural resources can be very valuable. The signi�cant economic pro�ts
which may be generated through the extraction and sale of a resource stock
can be thought of as resource rent, i.e., an economic rent that is attributable
to the resource itself. Government may take the view that resource rents
should, in principle, accrue to the State to be used for the bene�t of society
as a whole, rather than be allowed to remain in private hands. It is therefore
common for Governments to make charges on resource-owning companies in
an e¤ort to capture all or part of the resource rent.
Two common methods of charging are a revenue tax (or, equivalently, a

tax on the quantity extracted) and a pro�t tax (sometimes referred to as a
royalty).
A revenue (or severance) tax, in e¤ect, lowers the market price that the

�rm receives. With a unit tax � on its production, a competitive �rm seeks
to maximise Z T

0

[[p� � ] q � c (q; x)] e�rtdt;

or, with an ad valorem tax,Z T

0

[[1� � ] pq � c (q; x)] e�rtdt:

In either case, the e¤ect is similar to that of an increase in the costs of
extraction; for example, a �at-rate tax on production is equivalent to a con-
stant marginal cost of production. With a revenue tax, we would expect the
resource owner to cease extraction earlier and to leave more of the resource in
the ground. Because the pro�t-maximising behaviour of the �rm is a¤ected
by the tax, we can say that the tax is distortionary.
A pro�ts tax or royalty levied at a rate � changes the �rm�s objective

function toZ T

0

[1� � ] [pq � c (q; x)] e�rtdt = [1� � ]
Z T

0

[pq � c (q; x)] e�rtdt:

Since we can divide through the entire integral function by [1� � ] and leave
it unaltered, it is apparent that the tax is not going to change the pro�t-
maximising behaviour of the �rm and it is therefore not distortionary.
A pro�ts tax does, however, clearly reduce the present value of the re-

source. It may, therefore, reduce incentives for companies to explore or
prospect for new reserves.
In some cases, resource stocks may already be in public ownership. The

Government is then in a position to sell the rights to extract the resource.
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Some form of competitive tendering or bidding process could then be used in
order to capture the (discounted) resource rent at the outset. What would
the maximum amount be that a �rm would be willing to pay now for the
right to extract a non-renewable resource over its economic lifetime?

6 Further reading

Look at Conrad, pp.91-100, and HSW, Chapter 8.

Appendix: the Hamiltonian function

We said in an earlier lecture that the conditions for the e¢ cient exploitation
of a natural resource could be obtained directly if we set up the Lagrangian
for the resource owner�s (social planner�s) problem in a particular way, called
a Hamiltonian. Below we look, brie�y, at the derivation of the Hamiltonian
for a simple resource problem and the conditions for an optimal solution.
De�ne an instantaneous pro�t function

� (q (t) ; x (t)) � pq (t)� c (q (t) ; x (t)) ;

with �qq � �cqq < 0 and �x � �cx � 0. This just states that pro�ts are
increasing in q (but at a decreasing rate) and may also be increasing in x,
the size of the resource stock.
The (social planner�s) problem is to

max
q

Z T

0

� (�) e�rtdt;

s:t: _x = f (x (t) ; q (t)) ; x (0) = x0:

The constraints here state that the size of the stock is evolving according to
a function f (�) of the stock itself (if there is growth) and the extraction rate
q (t), and that the initial size of the stock is given (as x0).
De�ne a Lagrangian function in the usual way as

L �
Z T

0

�
� (�) e�rt + � (t) [f (�)� _x]

	
dt; (5)

noting that here the multiplier � implicitly denotes a discounted shadow
price. Thus

� (t) � � (t) e�rt;
where � is the current value shadow price.
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Now, de�ne a new function H (�) where

H (�) � � (�) e�rt + � (t) f (�) ;

so that

L =
Z T

0

H (q; x; �; t) dt�
Z T

0

� (t) _xdt: (6)

The function H (�) is the (present value) Hamiltonian.
If we integrate the term in the second integral in (6) by parts (look at

any good �mathematics for economists�text) to obtainZ T

0

� (t) _xdt = � (T )x (T )� � (0) x0 �
Z T

0

_�x (t) dt;

we can rewrite the Lagrangian as

L �
Z T

0

fH (�) + _�xg dt+ � (0) x0 � � (T )x (T ) : (7)

Di¤erentiating (7) with respect to q, x and � gives the �rst order necessary
conditions

Lq = Hq = �qe
�rt + �fq = 0; (8)

Lx = Hx + _� = �xe
�rt + �fx + _� = 0 (9)

and, after substituting
R T
0
� (t) _xdt back into (7),

L� = H� � _x = f (�)� _x = 0: (10)

From (8), optimal exploitation requires

�qe
�rt = ��fq

or
�qe

�rt = �; (11)

if, as is usually the case, f (�) � g (x)� q (where g (x) is a growth function)
and hence fq = �1. This is equivalent to the familiar current period condition
for optimal extraction

�q = �: (12)

From (9) we get what is known as the costate condition4 or adjoint equation

_� = ��xe�rt � �fx (13)

4Here, q is the so-called control variable and x is the state variable.
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which describes the change in the (discounted) shadow price of the stock over
time. Note that, from � (t) � � (t) e�rt we can �nd

_� =
h
_�� r�

i
e�rt

and hence, in current value terms, the costate condition becomes

_� = ��x � � [fx � r] : (14)

Notice that for a non-renewable resource, where fx = g0 (x) = 0, this condi-
tion becomes more familiar as

_� = �r � �x;
with resource-dependent costs, and

_� = �r

without.
This is the bare bones of a methodology for solving dynamic optimisation

problems known as optimal control theory. See HSW, Box 7.2 or look at
Conrad (Section 1.2) for a simpli�ed discrete-time version.
So, what exactly does the Hamiltonian represent? The present value

Hamiltonian is
H (�) � � (�) e�rt + � (t) f (�) ;

while its current value equivalent can be written as

Hc (�) � � (�) + � (t) f (�) ;

where f (�) is the function that describes the (instantaneous) change in the
size of the resource stock. The Hamiltonian measures the total rate of in-
crease in the (current or present) value of the managed resource. Here, � (�)
is the net �ow of returns from the resource and � (t) f (�) is the increase in the
value of the resource stock, taking into account both extraction and growth
(if any).
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