Renewable resource exploitation: fishery regulation

NRE - Lecture 5

Aaron Hatcher

Department of Economics
University of Portsmouth
The need for regulation
The need for regulation

- Optimal exploitation requires

\[\pi_q = \lambda \]
The need for regulation

- Optimal exploitation requires
 \[\pi_q = \lambda \]

- The shadow price gives the marginal value of the stock
The need for regulation

- Optimal exploitation requires
 \[\pi_q = \lambda \]

- The shadow price gives the marginal value of the stock
- Under open access, individual firms do not perceive \(\lambda \)
Optimal exploitation requires

\[\pi_q = \lambda \]

The shadow price gives the marginal value of the stock

Under open access, individual firms do not perceive \(\lambda \)

Market failure - absence of a resource price
The need for regulation

- Optimal exploitation requires
 \[\pi_q = \lambda \]

- The shadow price gives the marginal value of the stock
- Under open access, individual firms do not perceive \(\lambda \)
- Market failure - absence of a resource price
- *Economic* overfishing implies excessive effort (inputs) and *rent dissipation*
The need for regulation

- Optimal exploitation requires
 \[\pi_q = \lambda \]

- The shadow price gives the marginal value of the stock
- Under open access, individual firms do not perceive \(\lambda \)
- Market failure - absence of a resource price
- *Economic* overfishing implies excessive effort (inputs) and *rent dissipation*
- Rationale for regulation or *management*
Economic management instruments
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)

 - Taxes and tradeable quotas
 - Tax on catch (harvest)
 - Firms choose q so that $p(q) = \tau$ if $\tau = \lambda$ then catch will be optimal
 - Knowing λ would require a huge amount of information
 - But a tax could still be used to regulate catch (landings)
 - Politically unpopular!
Economic management instruments

- Designed to impose a user cost for the resource (proxy for λ)
- Taxes and tradeable quotas
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)

If $\tau = \lambda$ then catch will be optimal. Knowing λ would require a huge amount of information. But a tax could still be used to regulate catch (landings) - politically unpopular!
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)
- Firms choose q so that $p - c'(q) = \tau$

Knowing λ would require a huge amount of information.

But a tax could still be used to regulate catch (landings) politically unpopular!
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)
- Firms choose q so that $p - c'(q) = \tau$
- If $\tau = \lambda$ then catch will be optimal
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)
- Firms choose q so that $p - c'(q) = \tau$
- If $\tau = \lambda$ then catch will be optimal
- Knowing λ would require a huge amount of information
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)
- Firms choose q so that $p - c'(q) = \tau$
- If $\tau = \lambda$ then catch will be optimal
- Knowing λ would require a huge amount of information
- But a tax could still be used to regulate catch (landings)
Economic management instruments

- Designed to impose a *user cost* for the resource (proxy for λ)
- Taxes and tradeable quotas
- Tax on catch (harvest)
- Firms choose q so that $p - c'(q) = \tau$
- If $\tau = \lambda$ then catch will be optimal
- Knowing λ would require a huge amount of information
- But a tax could still be used to regulate catch (landings)
- Politically unpopular!
Economic management instruments *contd*.

- Individual transferable quotas (ITQs)

- The regulator only has to choose a total catch (TAC).
- The quota price is set by the market.
- Firms choose q so that $p_c(q) = s$.
- Second-best approach - choose a "safe" TAC.
- Quota market ensures efficient allocation.
- Practical issues: enforcement, discards.
- ITQ systems in Australia, New Zealand, Iceland, and Canada.
Economic management instruments *contd*.

- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
Economic management instruments *contd.*

- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
- The quota price is set by the market
Economic management instruments *contd.*

- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
- The quota price is set by the market
- Firms choose q so that $p - c'(q) = s$
Economic management instruments *contd.*

- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
- The quota price is set by the market
- Firms choose q so that $p - c'(q) = s$
- Second-best approach - choose a “safe” TAC
- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
- The quota price is set by the market
- Firms choose q so that $p - c'(q) = s$
- Second-best approach - choose a “safe” TAC
- Quota market ensures efficient allocation
Individual transferable quotas (ITQs)
Regulator only has to choose a total catch (TAC)
The quota price is set by the market
Firms choose q so that $p - c'(q) = s$
Second-best approach - choose a “safe” TAC
Quota market ensures efficient allocation
Practical issues: enforcement, discards
Economic management instruments *contd.*

- Individual transferable quotas (ITQs)
- Regulator only has to choose a total catch (TAC)
- The quota price is set by the market
- Firms choose q so that $p - c'(q) = s$
- Second-best approach - choose a “safe” TAC
- Quota market ensures efficient allocation
- Practical issues: enforcement, discards
- ITQ systems in Australia, New Zealand, Iceland and Canada
ITQs: firm demand
ITQs: industry *inverse* demand
Rent distribution
Rent distribution

- Tax revenues \approx resource rent
Rent distribution

- Tax revenues \(\approx \) resource rent
- Collected by regulator (society)
Rent distribution

- Tax revenues \approx resource rent
- Collected by regulator (society)
- ITQs - rent distribution depends on allocation method
Rent distribution

- Tax revenues \(\approx \) resource rent
- Collected by regulator (society)
- ITQs - rent distribution depends on allocation method
- Annual quota could be sold by the regulator
Rent distribution

- Tax revenues \approx resource rent
- Collected by regulator (society)
- ITQs - rent distribution depends on allocation method
- Annual quota could be sold by the regulator
- Typically, *permanent* quotas are given free to industry
Rent distribution

- Tax revenues ≈ resource rent
- Collected by regulator (society)
- ITQs - rent distribution depends on allocation method
- Annual quota could be sold by the regulator
- Typically, *permanent* quotas are given free to industry
- Rents accrue to industry
Rent distribution

- Tax revenues \(\approx\) resource rent
- Collected by regulator (society)
- ITQs - rent distribution depends on allocation method
- Annual quota could be sold by the regulator
- Typically, *permanent* quotas are given free to industry
- Rents accrue to industry
- Fiscal measures for rent capture?
Effort pricing?
Effort pricing?

- In principle, effort charges/quotas could impose a user cost *indirectly*
Effort pricing?

- In principle, effort charges/quotas could impose a user cost indirectly.
- But, “effort” includes all inputs.

License charges are used to raise revenue (rent), e.g., Falkland Islands.
Effort pricing?

- In principle, effort charges/quotas could impose a user cost *indirectly*
- But, "effort" includes *all* inputs
- Which input(s) to target?
Effort pricing?

- In principle, effort charges/quotas could impose a user cost *indirectly*.
- But, “effort” includes *all* inputs.
- Which input(s) to target?
- Relationship between effort and catch?
Effort pricing?

- In principle, effort charges/quotas could impose a user cost indirectly
- But, “effort” includes all inputs
- Which input(s) to target?
- Relationship between effort and catch?
- Licence charges are used to raise revenue (≈ rent)
Effort pricing?

- In principle, effort charges/quotas could impose a user cost indirectly
- But, “effort” includes all inputs
- Which input(s) to target?
- Relationship between effort and catch?
- Licence charges are used to raise revenue (\approx rent)
- e.g., Falkland Islands
Other management measures
Other management measures

- Most regulations are primarily designed to control catches
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas

- Capacity reduction - decommissioning/buyback schemes

- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
 - closed areas/seasons
 - gear modifications, etc. (seabirds, cetaceans)
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits

- Capacity reduction - decommissioning/buyback schemes
- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
 - closed areas/seasons
 - gear modifications, etc. (seabirds, cetaceans)
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel “capacity” limits (tonnage, engine power)

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes
- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
 - closed areas/seasons
 - gear modifications, etc. (seabirds, cetaceans)
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel "capacity" limits (tonnage, engine power)
 - "days-at-sea" limits
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits (“limited entry”)
 - vessel “capacity” limits (tonnage, engine power)
 - “days-at-sea” limits

- Managers favour effort controls, but...
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel “capacity” limits (tonnage, engine power)
 - “days-at-sea” limits

- Managers favour effort controls, but...
 - they introduce inefficiency
Other management measures

- Most regulations are primarily designed to control catches:
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel "capacity" limits (tonnage, engine power)
 - "days-at-sea" limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel "capacity" limits (tonnage, engine power)
 - "days-at-sea" limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel "capacity" limits (tonnage, engine power)
 - "days-at-sea" limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes

- Other (technical) measures
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel “capacity” limits (tonnage, engine power)
 - “days-at-sea” limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes

- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel "capacity" limits (tonnage, engine power)
 - "days-at-sea" limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes

- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
 - closed areas/seasons
Other management measures

- Most regulations are primarily designed to control catches
 - non-transferable annual catch quotas
 - weekly/monthly/trip catch limits
 - vessel licences/permits ("limited entry")
 - vessel “capacity” limits (tonnage, engine power)
 - “days-at-sea” limits

- Managers favour effort controls, but...
 - they introduce inefficiency
 - they only regulate catch indirectly

- Capacity reduction - decommissioning/buyback schemes

- Other (technical) measures
 - minimum mesh sizes, minimum landing sizes
 - closed areas/seasons
 - gear modifications, etc. (seabirds, cetaceans)
Benefits and costs of management
Benefits and costs of management

- economic surplus (resource rent)
Benefits and costs of management

- economic surplus (resource rent)
- increased harvest?
Benefits and costs of management

- economic surplus (resource rent)
- increased harvest?
- costs of management
Benefits and costs of management

- economic surplus (resource rent)
- increased harvest?
- costs of management
- enforcement costs
Benefits and costs of management

- economic surplus (resource rent)
- increased harvest?
- costs of management
- enforcement costs
- Optimum where $MSB = MSC$
Benefits and costs of management

- economic surplus (resource rent)
- increased harvest?
- costs of management
- enforcement costs
- Optimum where $MSB = MSC$
- Cost recovery?
Fishery management policies
Fishery management policies

- EU Common Fisheries Policy
 http://ec.europa.eu/fisheries/index_en.htm
Fishery management policies

- EU Common Fisheries Policy
 http://ec.europa.eu/fisheries/index_en.htm

- UK fisheries management
 http://www.defra.gov.uk/marine/index.htm
 http://www.scotland.gov.uk/Topics/Fisheries/Sea-Fisheries
Fishery management policies

- EU Common Fisheries Policy
 http://ec.europa.eu/fisheries/index_en.htm

- UK fisheries management
 http://www.defra.gov.uk/marine/index.htm
 http://www.scotland.gov.uk/Topics/Fisheries/Sea-Fisheries

- New Zealand’s ITQ system