
Birkbeck Economics

MSc Economics, PGCert Econometrics
MSc Financial Economics

Autumn 2009

ECONOMETRICS
Ron Smith : R.Smith@bbk.ac.uk
Contents

1. Background

2. Exercises
3. Advice on Econometric projects

Notes
4. LRM
5. Testing
6. Diagnostic tests
7. Univariate stochastic processes
8. ARDL
9. Cointegration
10. Endogeneity



1. Introduction

1.1. Aims

This course provides an introduction to theoretical and applied econometrics
which emphasises actually doing applied econometrics. This involves combin-
ing economic theory, statistical methods and an understanding of the data with
the ability to use the appropriate software.
Econometrics now divides into time-series (often using macroeconomic or �-

nancial data) and microeconometrics (often using large cross-sections of data).
The applications during the �rst term emphasise time-series methods, microecono-
metric methods are covered in more detail in the second term and the Advanced
Econometrics option of the Economics MSc. However most of the basic results for
the linear regression model apply to cross-section as well as time series data. The
di¤erence is that issues of temporal dependence, dynamics, are more important in
time-series, while issues of non-linearity are more important in microeconometrics.
Distinguishing correlations from causality is central to both.

1.2. Learning Outcomes

� Derive standard estimators (OLS, ML, GLS) and understand their proper-
ties

� Explain the basis for standard exact and asymptotic tests and use them in
practice

� Develop and analyse basic univariate and multivariate time-series models
for integrated and cointegrated data and know how to choose between al-
ternative models

� Use standard econometrics packages and interpret their output

� Read understand and explain empirical articles in the literature of the sort
that appear in the Economic Journal or American Economic Review

� Conduct and report on an independent piece of empirical research that uses
advanced econometric techniques.
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1.3. Your input

� To achieve the learning outcomes (and pass the exams) requires a lot of
independent work by you. We will assume that you know how to learn and
that there are things that we do not have to tell you because you can work
them out or look them up for yourself.

� Read these notes.

� Ensure that you are familiar with matrix algebra, statistics and standard
economic models.

� Ensure that you are familiar with a statistical package such as EViews or
Stata.

� Try to attend all lectures and classes, if you have to miss them make sure
that you know what they covered and get copies of notes from other students.

� Do the class exercises in advance. Continuously review the material in lec-
tures, classes and these notes, working in groups if you can.

� Identify gaps in your knowledge and take action to �ll them, by asking
questions of lecturers or class teachers and by searching in text books. We
are available to answer questions during o¢ ce hours (posted on our doors)
or by email.

� Do the applied exercise (section 2.3 of the notes) during the �rst term. We
will assume that you have done it and base exam questions on it.

� Start thinking about a topic for your project during the �rst term and work
on it during the second term.

1.4. Assessment

Assessment is based on two thirds examination, one third applied econometric
project. The exam will contain seven questions: four in Section A, roughly based
on topics covered in the �rst term; three in Section B, roughly based on topics
covered in the second term. The division is rough because the topics overlap a
lot. You will be required to do three questions, at least one from each section.
The division into sections this year is slightly di¤erent from previous years. You
will not be provided with statistical tables in the exam, any critical values needed
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will be provided on the question paper. The exam will involve calculations and
you may take a non-programmable calculator.

1.5. Structure of the Booklet

After this introduction, the rest of Section 1 sets out what is being covered in the
course and recommended reading.
Section 2 exercises. These are (i) exercises for the weekly tutorial classes in

the �rst term; (ii) some examples, mainly from old exams, with answer, (iii) an
applied exercise to be done during the �rst term in your own time.
Section 3 contains advice on how to do your applied econometric project (which

has to be handed in after Easter). Most of the techniques that you will need for
your project will be taught in the �rst term.
The rest of the booklet contains notes which roughly follow the order of the

lectures.
The course emphasises actually doing applied econometrics. The skill to com-

bine economic theory, statistical methods and an understanding of the data with
the ability to use the appropriate software is something that is learnt through
experience rather than taught in lectures. The applied exercise in Section 2 is
designed to give you that experience. It is essential that you start it as soon as
possible. There will be classes in using econometric packages on the computer
early in the Autumn term. The applied exercise contains a lot of information that
we will assume that you have learned and the theory in the lectures will make a
lot more sense if you have seen how it is used. It is essential that you know how
to use an econometric package, either EViews or any other one you wish, by the
middle of the Autumn term. We assume that you have done the applied exercise
and you will notice that lots of questions using these data appear on past exam
questions.
These notes cover the material taught in the Autumn term. In the Spring

term there will be one lecture and a class each week covering more advanced and
more applied topics.

1.6. Provisional Outline Autumn Term

By Weeks:

1. Least Squares and the Linear Regression Model (LRM).
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2. Maximum Likelihood estimation of the LRM.

3. Test procedures, Asymptotic and Exact.

4. Speci�cation and Diagnostic Tests.

5. Univariate Stochastic Processes: ARIMA and unit roots

6. ARDL models.

7. Cointegration.

8. Vector Autoregressions and Johansen estimation of Cointegrating Vectors.

9. Endogenous regressors and Instrumental Variable Estimation.

10. Applications and Revision.

1.7. Reading

The lectures do not follow any particular text, but you should use a text book
to supplement the lectures and to cover issues in your project that are not in the
lectures. There are a large number of good texts, choose one that uses matrix
algbera. Use the index to locate topics, they are covered in di¤erent places in
di¤erent texts. In most cases you do not need the latest edition of the text.
Some are referred to below, but there are many other good texts. The book
that is probably closest to this course is Verbeek, (2008). Students �nd Kennedy
(2003) very useful. It is not a textbook, it leaves out all the derivations, but it
has a brilliant explanation of what econometrics is all about. The 5th edition
has an excellent chapter on doing applied econometrics. Greene (2008) is a very
comprehensive text. If your current or future work involves econometrics, you
will need a textbook for work and Greene is a good general reference. Ruud, P.A.
(2000) An Introduction to Classical Econometric Theory, Oxford is another good
text. If you have not done any econometrics before you might want to start with
an introductory text that does not use matrix algebra, like Stock and Watson
(2003) or many others.
Maddala and Kim, (1998) is a good introduction to time-series issues, but

does not cover a range of other econometric topics that we will deal with. En-
ders (2005) is a more general applied time-series text and Patterson (2000) has
many applications. Although a little dated, Hamilton (1994) remains the best
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advanced time-series text. The approach to time-series in this course is loosely
based on the Hendry methodology, Hendry ( 1995) provides the authorised ver-
sion. An early exposition of the methodology is Spanos (1986), which is based on
the econometrics course he gave here at Birkbeck.
Angrist and Pischke (2009) is an excellent accessible treatment of microecono-

metrics. Wooldridge (2002) covers cross-section and panel estimation. Favero
(2001) and Canova (2007) are very good at linking the macroeconomic theory to
the econometrics. Cuthbertson (1996) has good �nance examples.
You should also read applied econometric articles. The Journal of Economic

Literature, Journal of Economic Perspectives and the Journal of Economic Surveys
are good places to look.

References
Angrist, Joshua D. and Jorn-Ste¤en Pischke, (2009) Mostly Harmless Econo-

metrics, Princeton.
Canova, Fabio (2007) Methods for Applied Macroeconomic Research, Prince-

ton.
Cuthbertson, Keith (1996) Quantitative Financial Economics, Wiley.
Enders, W (2005) Applied Econometric Time Series, 2nd edition Wiley.
Favero, Carlo (2001) Applied Macroeconometrics, Oxford.
Greene, William (2008) Econometric Analysis, 6th edition, Prentice Hall.
Hamilton, James D (1994), Time Series Analysis (Princeton/Wiley).
Hendry, David (1995) Dynamic Econometrics, Oxford.
Kennedy, Peter (2003) A Guide to Econometrics 5th edition Blackwell.
Maddala G S and In-Moo Kim, (1998) Unit Roots, Cointegration and Struc-

tural Change, Cambridge.
Patterson, Kerry (2000) An Introduction to Applied Econometrics, a time

series approach Macmillan.
Ruud, P.A. (2000) An Introduction to Classical Econometric Theory, Oxford.
Spanos, Aris (1986) Statistical Foundations of Econometric Modelling, Cam-

bridge University Press.
Stock and Watson (2003) Introduction to Econometrics, Addison Wesley.
Verbeek, Marno (2008) A Guide to Modern Econometrics, 3rd edition , Wiley.
Wooldridge, Je¤rey (2002) Econometric Analysis of Cross-section and panel

data, MIT Press.
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2. Exercises

2.1. Class exercises

These exercises should be attempted before coming to class. Unless you try to do
them yourself you will not know what problems you are having.

2.1.1. Week 1, No class

2.1.2. Week 2.

(a) Explain the following terms used to describe estimators:
Conditional Expectation; Least Squares; Maximum Likelihood; Unbiased; Min-

imum Variance; Consistent; Asymptotically Normal.
(b) Suppose we have the quadratic form S = �0A� where � is a 2 � 1 vector

and A a symmetric 2� 2 matrix:

S = [�1; �2]

�
a11 a12
a12 a22

� �
�1
�2

�
expand the quadratic form in terms of scalars, take the derivatives with respect
to �1 and �2 and show that @S=@� = 2A�:
(c) We will not do this in the lectures, but it can be found in any econometrics

text. Consider the Linear Regression Model

y = X� + u

where y is a T �1 vector of observations on a dependent variable; X a T �k rank
k matrix of observations on non-stochastic exogenous variables; u a T � 1 vector
of unobserved disturbances with E(u) = 0; E(uu0) = �2I; and � a k� 1 vector of
unknown coe¢ cients. The Least Squares estimator of � is b� = (X 0X)�1X 0y: The
Gauss-Markov theorem is that b� is the Best Linear Unbiased Estimator (BLUE)
of �: Prove this and explain what role each of the assumptions play in the proof.
How would the derivation change if the exogenous variables X were stochastic,
but distributed independently of the errors.

2.1.3. Week 3

Suppose for t = 1; 2; :::; T
Yt = �+ ut
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where the observations are independent and the distribution of Yt is given by

f(Yt) = (2��
2)�1=2 exp�1

2
(
Yt � �
�

)2

(a) What is the log-likelihood function and the score vector? Derive the max-
imum likelihood estimators of � = (�; �2)
(b) Derive the information matrix and the asymptotic variance-covariance ma-

trix.
(c) How would you estimate the standard error of the maximum likelihood

estimator of �?
(d) Compare your derivations to the matrix form for the linear regression

model in the notes.

2.1.4. Week 4.

Consider the Linear Regression Model

y = X� + u

where y is a T �1 vector of observations on a dependent variable; X a T �k rank
k matrix of observations on non-stochastic exogenous variables; u a T � 1 vector
of unobserved disturbances with E(u) = 0; E(uu0) = �2I; and � a k� 1 vector of
unknown coe¢ cients.
(a) Derive the estimator b� that makes X 0bu = 0; where bu = y �Xb�:
(b) De�ne PX = X(X 0X)�1X 0 and M = IT � PX : Show: (i) MM = M; (ii)

MPX = 0:
(c) Show that bu =My =Mu:
(d) Show that E(bu0bu) = (T � k)�2:
(e) Suppose that E(uu0) = �2
: (i) What is E(b� � E(b�))((b� � E(b�))0? (ii)

Derive the estimator e� that makes X 0
�1eu = 0; where eu = y �Xe�:
2.1.5. Week 5

(a) In the Linear Regression Model in the week 2 exercise, suppose that the
disturbances are also normally distributed and there are k prior restrictions of the
form � � q = 0, where q is a known vector of order k � 1: Derive a test statistic
to test these restrictions. Explain how you would calculate the restricted and
unrestricted sums of squares to carry out the test.
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(b) The following equations were estimated on 24 observations 1918-1941,
where Dt is dividends and Et is earnings in year t. Standard errors are given
in parentheses, SSR is sum of squared residuals, MLL is maximised log likelihood.

Dt = 0:59 +0:40Et SSR = 2:1849
(0:20) (0:10) MLL = �5:297

Dt = �0:14 +0:32Et �0:10Et�1 +0:70Dt�1 SSR = 0:84821
(0:17) (0:08) (0:10) (0:14) MLL = 6:0576

Test the hypothesis that the coe¢ cient of earnings in the �rst equation (i)
equals one (ii) equals zero.
Test the hypotheses that the coe¢ cients of lagged earnings and dividends in

the second equation equal zero, (i) individually (ii) jointly. For the joint test use
both F and LR tests.
Suppose the coe¢ cients in the second equation are labelled � = (�1; �2; �3; �4):

Write the restrictions that the coe¢ cients of lagged earnings and dividends equal
zero in the form R� � q = 0:

2.1.6. Week 6

1. Explain what e¤ect the following �problems�have on the properties of the least
squares estimates of the coe¢ cients and their standard errors. How would you
detect whether each problem was present:
(a) Heteroskedasticity.
(b) Serial correlation.
(d) Non-normality.
(e) Non-linearity.
(f) Exact multicollinearity.
2. Explain the following quote, from Angrist and Pischke (2009) p223. Do

you agree with it? �We prefer �xing OLS standard errors to GLS. GLS requires
even stronger assumptions than OLS, and the resulting asymptotic e¢ ciency gain
is likely to be modest, while �nite sample properties may be worse.�

2.1.7. Week 7

Consider the following models estimated over a sample t = 1; 2; :::; T . In each case
"t is white noise and � and � are less than one in absolute value.

yt = �+ �yt�1 + "t (1)

yt = �+ yt�1 + "t (2)
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yt = �+ "t + �"t�1 (3)

�yt = �+ ��yt�1 + "t + �"t�1 (4)

(a) Suppose you had estimates of the parameters, how would you forecast yT+1
and yT+2 in each case, given data up to yT ?
(b) In cases (1) and (2) substitute back to remove the yt�i:
(c) For cases (1) and (3) what is the expected value of yt?
(d) For (1) and (3) derive the variance, covariances and autocorrelations of the

series.
(e) For which of the models is yt I(1)?

2.1.8. Week 8

The Augmented Dickey Fuller Tests for non-stationarity uses a regression of the
form:

�yt = �+ �yt�1 + 
t+

pX
i=1

�i�yt�i + "t

(a) What is the null hypothesis tested; what is the test statistic and what is
its 95% critical value?
(b) Suppose all the �i = 0. Substitute back to express yt in terms of "t�i; t

and y0: Compare the cases � < 0 and � = 0:
(c) What is the rationale behind the

Pp
i=1 �i�yt�i term.

(d) using the Shiller data test whether the log price-earnings ratio, log(NSP=NE);
has a unit root (i) over 1950-2000, (ii) over the whole sample; using intercept and
no trend and using the AIC to choose p:

2.1.9. Week 9.

Consider the general model

dt = �0 + �1dt�1 + �0et + �1et�1 + 
0pt + 
1pt�1 + ut

where dt is log nominal dividends, et is log nominal earnings and pt is the log of
the producer price index.
(a) How would you calculate the long-run elasticity of dividends to prices and

earnings, �i in:
d�t = �0 + �1et + �2pt:

.
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(b) How would you estimate the model subject to the restrictions that the
long-run elasticity to earnings is unity and to prices zero.
(c) Suppose it was believed that the appropriate model was

dt = �+ �et + 
pt + vt; vt = �vt�1 + "t;

where � is less than one in absolute value. Show that this is a restricted form of
the general model and derive the two restrictions.
(d) Suppose it was believed that the adjustment to the long-run relationship

was given by:
�dt = �1�d

�
t + �2(d

�
t�1 � dt�1) + ut

what restriction does this impose on the general model.
(e) Using the Shiller data, estimate the models over the period 1950-1986 and

test the three sets of restrictions.

2.1.10. Week 10.

Consider the VAR

yt = A0 + A1yt�1 + "t; t = 1; 2; :::; T

where yt = (y1t; y2t)0; A0 is a 2x1 vector, (ao; a1)0;

A1 =

�
a11 a12
a21 a22

�
; "t ~N

�
0
0
;

�
!11 !12
!21 !22

��
(a) Write down each equation of the VAR and explain how you would estimate

the coe¢ cients and covariance matrix.
(b) Given estimates of the parameters, how would you forecast yT+1 and yT+2?
(c) What condition is required for y1t to be Granger non-causal with respect

to y2t?
(d) Write the VAR as

�yt = A0 +�yt�1 + "t; t = 1; 2; :::; T:

Explain the relation between A1 and �:
(e) What are the implications for � if yit are (i) I(0); (ii) I(1) and cointegrated;

(iii) I(1) and not cointegrated? What restrictions does case (iii) put on A1?
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(f). Suppose the yit are I(1) with cointegrating relationship zt = y1t � �y2t.
Write out the restricted system and explain the restrictions this imposes on �:
Show that it has rank one.
(g) Derive the parameters of the ARDL(1,1) model:

y1t = �0 + �0y2t + �1y2t�1 + �1y1t�1 + ut

from the VAR. Hint note that E("1t j "2t) = (!12=!22)"2t and use this in the �rst
equation of the VAR substituting for "2t:

2.2. Example questions with answers (based on old exams).

2.2.1. LRM

Consider the linear regression model

y = X� + u;

where y is a T � 1 vector of observations on a dependent variable; X is a T � k
full-rank matrix of observations on non-stochastic, exogenous variables; u is a
T � 1 vector of unobserved disturbances with E(u) = 0 and E(uu0) = �2I; and �
is a k � 1 vector of unknown coe¢ cients.
(a) Derive the Ordinary Least Squares estimator of �, say b�.
(b) Prove that b� has minimum variance in the class of linear unbiased estima-

tors of �:
(c) De�ne the least squares residuals as bu = y �Xb�: Show that X 0bu = 0:
(d) Show that bu =My =Mu, where M = I �X(X 0

X)�1X
0
:

Answer
(a) The sum of squared residuals is

u0u = (y �X�)0(y �X�)
= y0y + �0X 0X� � 2�0X 0y

the �rst order condition is

@u0u

@�
= 2X 0X� � 2X 0y = 0

X 0X� = X 0yb� = (X 0X)�1X 0y
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(b) Consider another linear estimator

e� = Ly = (C + (X 0X)�1X 0)y

= (C + (X 0X)�1X 0)(X� + u)

= CX� + � + Cu+ (X 0X)�1X 0u

E(e�) = CX� + �

so this will only be unbiased if CX = X 0C 0 = 0 assume this is so. Its variance is

E(e� � �)(e� � �)0 = E
�
(C + (X 0X)�1X 0)u

	�
(C + (X 0X)�1X 0)u

	0
= E

�
Cu u0C 0 + (X 0X)�1X 0u u0X(X 0X)�1

+(X 0X)�1X 0u u0C 0 + Cuu0X(X 0X)�1

�
= �2

�
CC 0 + (X 0X)�1X 0X(X 0X)�1 + (X 0X)�1X 0C 0 + CX(X 0X)�1

	
= �2

�
CC 0 + (X 0X)�1

	
since CX = X 0C 0 = 0: CC 0 is a positive de�nite matrix for C 6= 0 so V (e�) >
V (b�) = �2(X 0X)�1:
(c)

X 0bu = X 0(y �X(X 0X)�1X 0y)

= X 0y �X 0X(X 0X)�1X 0y

= X 0y �X 0y = 0

(d)

bu = (y �X(X 0X)�1X 0y)

= (I �X(X 0X)�1X 0)y =My

= (I �X(X 0X)�1X 0)(X� + u)

= X� + u�X(X 0X)�1X 0X� �X(X 0X)�1X 0u

= X� �X� + u�X(X 0X)�1X 0u

= (I �X(X 0X)�1X 0)u =Mu

2.2.2. Diagnostic Tests

Consider the linear regression model

yt = �
0xt + ut; t = 1; 2; :::; T;
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where yt is an observation on a dependent variable at time t; xt is a k � 1 vector
of observations on some exogenous regressors; ut is an unobserved disturbance,
and � is a k � 1 vector of unknown coe¢ cients. For each of the �problems�listed
below: (i) explain the consequences of the problem for the properties of the least
squares estimates of � and their standard errors; (ii) explain how you would test
for the presence of the problem.
(a) Fourth-order serial correlation of the disturbance ut;
(b) Heteroskedasticity;
(c) Non-linearity;
(d) A shift in the variance of the errors at a known time T1, with k < T1 <

T � k;
(e) A shift in the coe¢ cients at a known time T1, with k < T1 < T � k
Answer
a) (i) b� is unbiased but not minimum variance, its standard errors are biased

(ii) estimate either

but = 4X
i=1

�ibut�i + b0xt + et
and test �i = 0 (with a Chi squared or F test) for up to fourth order serial
correlation or estimate but = �but�4 + b0xt + et
and test � = 0 using a t test for just fourth order serial correlation.
(b)(i) b� is unbiased but not minimum variance, its standard errors are biased

(ii) it depends on the form of the heteroskedasticity, run

bu2t = a+ b0zt + et
and test b = 0. Possible choices for zt are the regressors, their squares, their
squares and cross-products, powers of the �tted values.
(c) (i) b� is a biased and inconsistent estimator of the true parameters (ii) it

depends on the form of the non-linearity but running

but = a+ bby2t + et
where byt = b�xt and testing b = 0 may have power against squares and interaction
terms.
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(d) This is a particular form of heteroskedasticity (i) b� is unbiased but not
minimum variance, its standard errors are biased (ii) estimate the equation t =
1; 2; :::; T1 and get residuals bu1; then T1 + 1; :::; T and get residuals bu2 then

bu01bu1=(T1� k)bu02bu2=(T2� k) � F (T1� k; T2� k)
where T2 = T � T1:
(e) (i) b� is a biased and inconsistent estimator of the true changing parameters,

(ii) assuming the variance is constant and using the estimates in (d) and calling
the residuals from the estimates over the whole period bu

(bu0bu� bu01bu1 � bu02bu2)=k
(bu01bu1 + bu02bu2)=T � 2k � F (k; T � 2k)

2.2.3. Structural Stability

UK data 1979Q4-2003Q4 were used to explain the growth rate of GDP, �yt; by
the growth of trade weighted foreign GDP, �y�t ; the lagged long-term interest
rate, rt�1; and lagged growth, �yt�1. This was estimated over the whole period
and two sub-periods split at 1992Q3.

79Q4-03Q4 79Q4-92Q3 92Q3-03Q4
int 0.006 0.020 0.000
(se) (0.002) (0.007) (0.002)
��yt 0.569 0.459 0.585
(se) (0.143) (0.221) (0.142)
rt�1 -0.221 -0.670 0.239
(se) (0.073) (0.222) (0.151)
�yt�1 0.135 0.071 -0.006
(se) (0.088) (0.118) (0.147)
SERx100 0.559 0.686 0.282
SSRx100 0.288 0.226 0.03253
MLL 367.987 187.361 202.487
SC 0.017 0.421 0.910
Het 0.025 0.266 0.337
NObs 97 52 45
Standard errors of coe¢ cients are given in the (se) rows, SER is the standard

error of regression, SSR is the sum of squared residuals, MLL is the Maximised
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Log Likelihood, SC and Het give p values for tests for serial correlation and
heteroskedasticity, NObs is the number of observations.
(a) Test the hypothesis that the regression parameters are the same in both

periods. The 5% critical value of F(4,89) is 2.47.
(b) Test the hypothesis that the variances are the same in the two periods.

The 5% value of F(48,41) is 1.64.
(c) What light does your answer to (b) shed on your answer to (a).
(d) What evidence for misspeci�cation is there in the three equations?
(e) Comment on the di¤erences between the estimates for the two periods.
(f) [ Do you think that this equation could be interpreted as an IS curve?
Answer
(a) Chow test

(0:288� (0:226 + 0:0325))=4
(0:226 + 0:0325)=(97� 8) = 2:539

greater than the critical value, reject H0 that the parameters are equal.
(b) Variance Ratio test �

0:686

0:282

�2
= 5:92

Reject H0 that the variances are equal.
(c) The test in (a) is only valid if the variances are equal, thus the result may

not be reliable.
(d) The whole period equation fails serial correlation and heteroskedasticity

tests, those for the two sub periods do not. Thus it is likely that the serial
correlation was induced by the parameter change and the heteroskedasticity by
the change in variance in the two periods.
(e) Given the size of the standard errors and the similarity of the coe¢ cients

the e¤ect of foreign output growth did not change between the periods. The
coe¢ cient of lagged interest rate went from being sign�cantly negative to being
insign�cantly positive. The coe¢ cient of lagged growth is always insigni�cant.
The big di¤erence is that the variance is much smaller in the second period,
during the �Great moderation�, the economy was much more stable.
(f) It is a sort of IS curve, but the IS curve usually has the level of output

(or the output gap) rather than the growth rate as the dependent variable and
the real interest rate rather than the nominal interest rate as the independent
variable.
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2.2.4. ARIMA

Call the logarithm of the real Standard and Poor Stock price index yt: The fol-
lowing models were estimated over the period 1873-1986. Numbers in parentheses
below coe¢ cients are estimated standard errors and numbers in brackets are the
maximised log-likelihoods, "t is assumed to be a white-noise error in each case.

A: �yt = 0:0162 + "t [35:3726]
(0:0167)

B: �yt = 0:0164 +0:098 "t�1; + "t [35:7223]
(0:0181) (0:83)

C: �yt = 0:1523 +0:0641 �yt�1 + "t [35:6056]
(0:0168) (0:0947)

D: �yt = 0:0270 +0:822 "t�1 �0:642 �yt�1 + "t [37:8298]
(0:0294) (0:113) (0:149)

E: �yt = �0:266 +0:002 t �0:135 yt�1 +0:131 �yt�1 + "t [39:9282]
(0:102) (0:0008) (0:046) (0:095)

(a) Use model E to test for the presence of a unit root in yt: The 5% critical
value for the Augmented Dickey�Fuller test with trend is -3.4494.
(b) In model D, test at the 5% level whether the autoregressive and moving av-

erage coe¢ cients are signi�cant: (i) individually; (ii) jointly. Explain the con�ict
between the individual and joint results.
(c) Brie�y indicate how model D can be used to make a two-period ahead

forecast, given data up to 1986.
(d) Which of these models would you choose on the basis of the Akaike Infor-

mation Criterion?
Answer
(a) The ADF statistic is -0.135/0.046=-2.93, Do not reject the null of a unit

root.
(b) (i) individually: 0.822/0.113=7.27; -0.642/0.149=-4.31 so both are individ-

ually signi�cant. (ii) jointly 2(37.8298-35.3726)=4.91 which is less than the 5%
critical value of 5.99 so jointly they are not signi�cant. If the true model is

�yt = �+ "t

and we multiply by 1� �L where L is the lag operator we get
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(1� �L)�yt = (1� �L) (�+ "t)
�yt = (1� �)�+ ��yt�1 + "t � �"t�1

in this example the AR and MA coe¢ cients are of opposite signs and similar order
of magnitudes, so cancel out.
(c) Call 1986 T then the forecasts are

�yf1987 = 0:0270 + 0:822b"1986 � 0:642�y1986
�yf1988 = 0:0270� 0:642�yf1987

(d) AIC MLLi � ki chooses model E

Model MLL k AIC
A 35:3726 1 34:3726
B 35:7223 2 33:7223
C 35:6056 2 33:6056
D 37:8298 3 34:8298
E 39:9282 4 35:9282

2.2.5. VAR

Consider the �rst-order Vector Autoregression, VAR, for f(yt; xt); t = 1; 2; :::; Tg:

yt = a10 + a11yt�1 + a12xt�1 + "1t;

xt = a20 + a21yt�1 + a22xt�1 + "2t;�
"1t
"2t

�
s NID

��
0
0

�
;

�
�11 �12
�21 �22

��
:

(a) How would you estimate the coe¢ cients and the error variance�covariance
matrix of the VAR?
(b) Under what restriction is yt Granger non-causal for xt?
(c) Derive the parameters of the Autoregressive Distributed Lag, ARDL(1,1),

model
yt = �0 + �1yt�1 + �0xt + �1xt�1 + ut

from the parameters of the VAR. What is the variance of ut?
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(d) Suppose yt and xt were each I(1) and zt = yt � �xt was I(0). What
implications does this have for the VAR?
Answer
(3) (a) Estimate each equation by OLS getting residuals b"it then

b�ij = (T � 3)�1Xb"itb"jt; i; j = 1; 2:
T�1 also acceptable.
(b) If a21 = 0 yt is Granger non-causal for xt:
(c)

E(yt j xt; yt�1; xt�1) = a10 + a11yt�1 + a12xt�1 + E("1t j xt; yt�1;xt�1)
E("1t j xt; yt�1;xt�1) = �12�

�1
22 "2t

= �12�
�1
22 (xt � a20 � a21yt�1 � a22xt�1)

E(yt j xt; yt�1; xt�1) = a10 + a11yt�1 + a12xt�1 + �12�
�1
22 (xt � a20 � a21yt�1 � a22xt�1)

yt =
�
a10 � �12��122 a20

�
+ �12�

�1
22 xt +

�
a11 � �12��122 a21

�
yt�1 +

�
a12 � �12��122 a22

�
xt�1 + ut

ut = "1t � �12��122 "2t
E(u2t ) = �11 +

�
�12�

�1
22

�2
�22 � 2

�
�12�

�1
22

�
�12

(d) There would be a cross-equation restriction that comes from the cointe-
grating relationship and it would be estimated as a VECM

�yt = a10 + a1zt�1 + "1t

�xt = a20 + a2zt�1 + "2t

2.2.6. Cointegration 1

A second-order cointegrating vector error-correction model (VECM), with unre-
stricted intercepts and restricted trends, was estimated on quarterly US data from
1947Q3 to 1988Q4. The variables included were the logarithm of real consump-
tion (ct), the logarithm of real investment (it), and the logarithm of real income
(yt). The Johansen maximal eigenvalue tests for, r; the number of cointegrating
vectors, were:
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Ho H1 Statistic 10%CV
r = 0 r = 1 34:6 23:1
r � 1 r = 2 15:8 17:2
r � 2 r = 3 3:3 10:5

The Johansen Trace Tests were:

Ho H1 Statistic 10%CV
r = 0 r � 1 53:7 39:3
r � 1 r � 2 19:1 23:1
r � 2 r = 3 3:3 10:5

Assuming that r = 2, the following two just-identi�ed cointegrating vectors Z1t
and Z2t (standard errors in parentheses) were estimated:

c i y t
1 0 �1:13 0:0003

(0:16) (0:0006)
0 1 �1:14 0:0007

(0:26) (0:001)

The system maximised log-likelihood (MLL) was 1552.9. The system was then
estimated subject to the over-identifying restrictions that: (i) both coe¢ cients of
income were unity, giving a MLL of 1552.3; and (ii) not only were the income
coe¢ cients unity, but that the trend coe¢ cients were also zero, giving a MLL of
1548.1.
The Vector Error Correction Estimates [t statistics] for the just identi�ed sys-

tem (constants included but not reported) were
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�ct �it �yt
Z1t�1 0:075068 0:262958 0:192686

[2:74240] [ 3:20914] [ 4:63684]
Z2t�1 �0:011232 �0:171416 0:009323

[�0:67114] [�3:42157] [ 0:36694]
�ct�1 �0:209469 �0:171819 0:094535

[�2:31259] [�0:63368] [ 0:68749]
�it�1 0:022574 0:334330 0:156990

[0:72374] [ 3:58069] [ 3:31537]
�yt�1 0:212411 0:697502 0:126186

[3:17484] [ 3:48267] [ 1:24236]
R2 0:146291 0:405637 0:320507
SER 0:007527 0:022533 0:011427

(a) How many cointegrating vectors do the tests indicate?
(b) If there are r cointegrating vectors, how many restrictions on each vector

do you need to identify it.
(c) Interpret the just identifying restrictions used above.
(d) Test the two sets of overidentifying restrictions. 5% �2(2) = 5:99; �2(4) =

9:49:
(e) The VECM was estimated with unrestricted intercepts and restricted

trends. What does this mean?
(f) Do you think investment is Granger Causal for Consumption.
Answer
(a) one (b) r
(c) Investment does not appear in the consumption function and consumption

does not appear in the investment function.
(d) (i) 2(1552.9-1552.3)=1.2<�2(2); do not rejectH0 (ii) 2(1552.9-1548.1)=9.6>�2(4)

reject H0 .
(e) Write the VECM

�yt = �+ �(�yt�1 + 
t) + ut

where the intercepts � lie outside the error correction term and the trends 
t
are restricted to lie within it. If yt is a mx1 vector, whereas one estimates m
intercepts, one only estimates r trend coe¢ cients, giving m� r restriction.
(f) The fact that both Z2t�1 (which is a function of lagged investment) and

�it�1 are individually insigni�cant in the consumption equation suggests that

21



investment may be Granger non-causal for consumption, though the two terms
could be jointly sign�cant.

2.2.7. Cointegration 2

Let yt be the logarithm of GDP, rt the short-term interest rate, and pt the log-
arithm of the price level. Using UK data from 1964Q3 to 1998Q2, Vector Au-
toregressions (VARs) of order zero to 4 were estimated for �yt; �rt and �2pt,
each equation including an intercept: The maximised log-likelihoods, MLLi; for
each order were 0:1591.4, 1:1612.6, 2:1623.0, 3:1635.3, 4:1644.5. For a fourth-order
VAR, likelihood ratio tests of the non-causality of �rt with respect to the other
two variables gave a test statistic of 31.9 and of the non-causality of �2pt with
respect to the other two variables 8.4. For a fourth-order VAR, with unrestricted
intercepts and no trends, the Johansen trace test statistics for the number of
cointegrating vectors, r; and their 95% critical values in parentheses were: r = 0 :
61 (21); r � 1 : 37 (15); r � 2 : 22 (8):
(a) On the basis of the Akaike Information Criterion, what would be the pre-

ferred order of the VAR?
(b) Explain how the Granger non-causality tests are constructed. What are

the degrees of freedom of the tests? Interpret the results.
(c) How many cointegrating vectors do there seem to be in this data? Interpret

your conclusion. Explain what unrestricted intercept means.
(d) Interpret the variables in the VAR and explain what relationship you would

expect between them.
Answer
(a) AIC MLLi � ki chooses 4

Lag MLL k AIC
0 1591:4 3 1588:4
1 1612:6 12 1600:6
2 1623:0 21 1602:0
3 1635:3 30 1605:3
4 1644:5 39 1605:5

(b) To test Granger causality of �rt with respect to the other two variables,
the restricted model sets all the coe¢ cients of �rt�i to zero in the equations for
the other two variables �yt and �2pt: This is four restrictions in each of the two
equations so each test has 8 degrees of freedom. Similarly for �2pt: 31.9 is greater
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than 15.51 so reject the hypothesis that �rt in Granger non causal with respect to
the other two. 8.4 is less than the critical value so do not reject the hypothesis that
�2pt is non causal. Changes in interest rates help predict the change in in�ation
and growth, the change in in�ation does not help predict change in interest rates
and growth.
(c) There are three cointegrating vectors, each of the variables is I(0) as you

would expect, given that they are changes in possibly I(1) variables. The unre-
stricted intercept means that it is not restricted to lie within the cointegrating
vector.
(d) Raising interest rates should have a negative e¤ect on output growth (IS

curve), output growth should have a positive e¤ect on the change in in�ation
(Phillips curve), the change in in�ation should raise interest rates (Fisher e¤ect),
though this does not seem to be happening here.

2.2.8. VECM 1

A �rst order VECM was estimated on US annual data for log dividends, ldt; and
log earnings, let t = 1872 � 1999 assuming unrestricted intercept and no trend.
The system is

�dt = a10 + �1(dt�1 � �et�1) + u1t
�et = a20 + �2(dt�1 � �et�1) + u2t

with E(uitujt) = �ij; i; j = 1; 2: The test statistics, TS; and 5% critical values,
CV;for the Johansen trace cointegration tests were

Ho H1 TS CV
r = 0 r � 1 79:14 15:49
r � 1 r = 2 0:32 3:84

The estimates (with standard errors in parentheses) are � = 0:914; (0:014); �1 =
�0:333 (0:045); �2 = 0:112 (0:102):
An ECM equation was also estimated

�ldt = �0:142 +0:276 �let �0:363 ldt�1 +0:332 let�1 +"t
(0:018) (0:031) (0:037) (0:033)

:

(a) How many cointegrating vectors do the trace tests indicate?
(b) What just identifying restriction is imposed on the cointegrating vector?
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(c) Test the hypothesis that the long-run elasticity of dividends to earnings in
the VECM is unity.
(d) Explain the concept of weak exogeneity. Does the VECM suggest that

earnings are weakly exogenous for �?
(e) Assuming weak exogeneity of earnings, how do the parameters of the ECM

relate to those of the VECM.
(f) Compare the VECM and ECM estimates of the long run elasticity of earn-

ings to dividends.
Answer
(a) One (b) The coe¢ cient of dt equals unity (c) (0.914-1)/0.014=-6.1 Reject

H0 : � = 1: (d) A variable is weakly exogenous for a parameter if the parameters
of interest are just functions of the parameters of the conditional distribution and
the parameters of the conditional and marginal distribution are variation free (no
cross-equation restrictions). In this case the estimate of �2 is not signi�cantly
di¤erent from zero, t=0.112/0.102=1.1, so there is no information in the earnings
equation about �: (e) Conditional on weak exogeneity the system is

�dt = a10 + �1(dt�1 � �et�1) + u1t
�et = a20 + u2t

the ECM is

�dt = (a10 � �a20) + ��et + �1(dt�1 � �et�1) + vt

where � = �12=�22: (f) The long-run estimate from the ECM is 0.332/0.363=0.914,
the same as from the VECM.

2.2.9. VECM 2

Suppose the observed vector-valued time series fyt; t = 1; : : : ; Tg, where yt is an
n� 1 vector of random variables for all t, is generated as

yt = A1yt�1 +A2yt�2 + ut; t = 2; : : : ; T;

where ut is, in turn, generated by

ut = But�1 + �t; t = 1; : : : ; T;

and A1, A2 and B are n � n matrices of coe¢ cients and �t are unobserved i.i.d.
random disturbances with E[�t] = 0 and var(�t) = 
 for all t, where 
 is an n�n
positive de�nite symmetric matrix.
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(a) Show that this model can be rewritten as

�yt = Cyt�1 +D�yt�1 + E�yt�2 + �t; t = 3; : : : ; T;

where C = �(B� In)(A1 +A2 � In), D = (B� In)A2 +BA1 and E = BA2.
Answer This follows from:

yt �Byt�1 � yt�1 = A1yt�1 +A2yt�2

�B(A1yt�2 +A2yt�3 + ut�1) + ut � yt�1
= A1yt�1 +A2yt�2 �BA1yt�2 �BA2yt�3

+�t � yt�1
�A2yt�1 �BA1yt�1 �BA2yt�1

) �yt = �(B� In)(A1 +A2 � In)yt�1
+((B� In)A2 +BA1)�yt�1 +BA2�yt�2

+�t;

i.e. C = �(B� In)(A1 +A2 � In), D = (B� In)A2 +BA1 and E = BA2.
(b) Show that yt is
(i) I(2) if A1 +A2 = In and B = In;
(ii) I(1) if A1 + A2 = In and jIn � Bzj = 0 has all roots outside the unit

circle;and
I(1) if jIn �A1z �A2z

2j = 0 has all roots outside the unit circle and B = In.
Answer(i) It follows from (a) that, if A1 +A2 = In and B = In, then

�yt = A1�yt�1 +A2�yt�2 + �t

, �t = (In �A1L�A2L
2)�yt;

and jIn �A1z �A2z
2j = 0 has a unit root (i.e. z = 1 is a solution). Hence, �yt

is I(1), or equivalently yt is I(2). (ii) If jIn �Bzj = 0 has roots outside the unit
circle, then ut is stationary; then, A1 +A2 = In implies that yt is I(1). (iii) If
B = In, then it follows from (a) that

�yt = A1�yt�1 +A2�yt�1 + �t;

so that �yt is stationary, provided that jIn�A1z�A2z
2j = 0 has all roots outside

the unit circle. Hence, under these conditions yt is I(1).
(c) Is there a way to test whether the process satis�es case (ii) as opposed to

(iii) of part (b)? If so, how can this be determined? If not, why not?
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AnswerCase (iii) yields a stationary AR(2) for �yt. Case (ii) implies

�yt = (B�A2)�yt�1 +BA2�yt�2 + �t

= ~A1�yt�1 + ~A2�yt�2 + �t;

where ~A1 = B �A2 and ~A2 = BA2. This is also an AR(2), and stationarity of
�yt implies that the roots of its characteristic polynomial jIn � ~A1z � ~A2z

2j = 0
lie outside the unit circle. Hence, the two processes are indistinguishable.

2.2.10. Method of Moments 1

Consider the linear regression model

y = X� + u:

y is a T � 1 vector of observed dependent variables. X is a T � k full rank matrix
of right hand side variables. � is a k � 1 vector of unknown parameters. u is a
T � 1 vector of unobserved disturbances, with E(u) = 0; E(u u0) = �2IT :
(a) Suppose E(X 0u) = 0 derive the method of moments estimator of � and its

variance covariance matrix.
(b) Suppose E(X 0u) 6= 0; but there are is a T � k matrix of instruments, W

such that E(W 0u) = 0 and E(X 0W ) is a full rank matrix derive the method of
moments estimator of � and its variance covariance matrix.
(c) Brie�y compare the method of moments and maximum likelihood approach

to estimation.
ANSWER
Method of moments replaces population moments by sample equivalents. (a)

de�ne bu = y �Xb� then
X 0bu = X 0(y �Xb�) = X 0y �X 0Xb� = 0b� = (X 0X)�1X 0y

= (X 0X)�1X 0(X� + u)

= � + (X 0X)�1X 0u

since E(b�) = �
V (b�) = E(b� � �)(b� � �)0 = E((X 0X)�1X 0u)((X 0X)�1X 0u)0

= E((X 0X)�1X 0u u(X 0X)�1 = �2(X 0X)�1
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(b) De�ne eu = y �Xe� then
W 0eu = W 0(y �Xe�) =W 0y �W 0Xe� = 0e� = (W 0X)�1W 0y

= (W 0X)�1W 0(X� + u)

= � + (W 0X)�1W 0u

V (e�) = E((W 0X)�1W 0u u0W (W 0X)�1)

= �2(W 0X)�1W 0W (W 0X)�1

(c) ML requires specifying the distribution of the errors, if this is correctly speci�ed
thenML is fully e¢ cient but may not be robust when the distribution is incorrectly
speci�ed. MM does not require a distribution to be speci�ed and may be more
robust when then distribution is not known.

2.2.11. SEM 1

Consider the simultaneous equation model with structural form�
1 0
a 1

� �
y1t
y2t

�
+

�

1

2

�
xt =

�
�1t
�2t

�
; t = 1; � � � ; T;

where xt is exogenous, and a; 
1 and 
2 are parameters; and assume (�1t; �2t)
0 is

independent across t, with

E

�
�1t
�2t

�
= 0; var

�
�1t
�2t

�
= � 8 t;

where � is a positive de�nite and symmetric matrix.
(a) Derive the reduced form of this model, i.e. express the parameters and

residuals of�
y1t
y2t

�
=

�
b1
b2

�
xt +

�
u1t
u2t

�
; E

�
u1t
u2t

�
= �; ; var

�
u1t
u2t

�
= 


in terms of the parameters and residuals of the structural form.
Answer The �rst equation is already a reduced form (RF) equation, so that

b1 = �
1 and u1t � �1t. Substituting the �rst equation into the second yields
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the reduced form coe¢ cient for the second equation, b2 = �(
2 � a
1), and
u2t = �2t � a�1t. It follows that E[ut] = 0, and


 =

�
�11 �12 � a�11

�12 � a�11 �22 + a
2�11 � 2a�12

�
:

(b) Is the structural form of this simultaneous equation model identi�able?
Answer The structural form is not identi�able because identi�cation requires

at least 4 restrictions on the parameters of the system. The structural form
imposes only three: two normalization restrictions (the coe¢ cient of y1t in the
�rst equation, and of y2t in the second, is normalized to 1) and one exclusion
restriction (y2t is excluded from the �rst equation). Hence, identi�cation requires
one further restriction.
(c) Suppose that �12 = cov(�1t; �2t) = 0, and you run the OLS regression of

y2t onto y1t and xt. Show that the resulting coe¢ cient estimates are unbiased for
�a and �
2.
Answer The right-hand-side variable y1t is uncorrelated with �2t as a con-

sequence of �12 = 0 and xt is exogenous by hypothesis, i.e. also uncorrelated
with �2t. Hence, the regression equation satis�es Gauss-Markov assumptions, and
unbiasedness then follows from the Gauss-Markov Theorem.
(d) Continuing with the assumption that �12 = cov(�1t; �2t) = 0, show how to

use indirect least squares to obtain estimates of the structural form parameters.
Answer OLS estimation of the �rst (RF) equation yields estimates of 
1

and �11. OLS estimates of the second RF equation yields estimates of the RF
parameters in part (a). The covariance estimate, obtained from the OLS residuals
of both equations, yields an estimate of a. Under the assumption that �12 = 0,
the variance estimate of the second equation then yields an estimate of �22, while
the estimate of the coe¢ cient on xt yields an estimate of 
2.

2.2.12. SEM 2

Consider the simultaneous equations model:

y1t = �12y2t + 
11x1t + u1t;

y2t = �21y1t + 
22x2t + 
23x3t + u2t;

where y1t and y2t are endogenous variables, x1t, x2t and x3t are exogenous variables,
and (u1t; u2t) are NID(0;�) random disturbances.
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(a) Discuss the identi�ability of each equation of the system in terms of the
order and rank conditions for identi�cation.
(b) Explain why the Ordinary Least Squares estimator of (�12; 
11) is incon-

sistent.
(c) What are the Two-Stage Least Squares estimators of the coe¢ cients in the

two equations? Describe the procedure step by step.
(d) How would you conduct a Wu�Hausman test for the exogeneity of y2t in

the �rst equation?
Answer
(a) The system is

1 ��12 �
11 0 0
��21 1 0 �
22 �
23

Order condition is that the number of restrictions on each equation, d � m where
m is the number of endogenous variables, here 2. (There are other acceptable
ways of expressing the order condition). There are 3 restrictions on the �rst
equation (�11 = 1; 
12 = 0; 
22 = 0) so it is overidenti�ed. There are 2 restrictions
on the second equation (�22 = 1; 
21 = 0) so it is just identi�ed. The matrix
corresponding to the exclusions in the �rst equation �
22 �
23 has rank one,
as does the matrix corresponding to the exclusions in the second equation �
11;
so the rank condition holds.
(b) y2t is correlated with u1t because, u1t determines y1t and y1t determines

y2t:
(c) First estimate the reduced form by OLS

y1t = �11x1t + �12x2t + �13x3t + e1t

y2t = �21x1t + �22x2t + �23x3t + e2t

and use this to obtain the predicted values by1t and by2t then estimate by OLS using
these �tted values.

y1t = �12by2t + 
11x1t + v1t
y2t = �21by1t + 
22x2t + 
23x3t + v2t

(d) From the reduced form obtain the residuals from the y2t equation be2t then
estimate

y1t = �12y2t + 
11x1t + �be2t + v1t
test � = 0: If you cannot reject � = 0 then you can conclude that y2t is exogenous.
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2.2.13. GARCH 1

Suppose that the rate of return on a stock (xt) is generated according to the
model:

xt = � + "t;

"t = ut(�0 + �1"
2
t�1)

1=2; ut s NID(0; 1)

where �0 > 0 and 0 6 �1 < 1.
(a) Calculate the mean and variance of xt, and show that fxtg is a serially

uncorrelated process.
(b) What properties does the ordinary least squares estimator of � have?

Explain how to obtain asymptotically e¢ cient estimates of (�; �0; �1).
(c) Explain why the sample autocorrelation function of fx2tg may be useful in

the evaluation of the validity of the �rst-order ARCH assumption about "t.
(d) Explain how to test the hypothesis �1 = 0 using the Lagrange multiplier

principle.
Answer
(a) E("t j "t�1; "t�2; :::) = 0 so E(xt) = �:

V (xt) = E(xt � �)2 = E("2t ) = E(ut2(�0 + �1"2t�1) = �0=(1� �1)

E("t"t�k j "t�1; "t�2; :::) = "t�kE("t j "t�1; "t�2; :::) = 0
Hence xt is a serially uncorrelated process with constant variance and mean �:
(b) Above we showed that all the properties required for the Gauss-Markov

theorem hold therefore it is minimum variance in the class of linear unbiased
estimators. Non-linear estimators may be more e¢ cient and the MLE will be
asymptotically e¢ cient, which chooses the parameters to maximise

logL = �T
2
log 2� � 1

2

TX
1

log ht �
1

2

TX
1

log
"2t
ht

ht = �0 + �1"
2
t�1

(c) Let vt = "2t � ht; then

"2t = �0 + �1"
2
t�1 + vt

Using law of iterated expectation, show that vt is a zero mean, constant variance,
white noise, so x2t follows an AR1. If there are signi�cant higher order autocorre-
lations, this would suggest that this model is wrong.
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(d) LM test is TR2 based on OLS regression

b"2t = �0 + �0b"2t�1 + vt
is Chi-squared one.

2.2.14. Method of Moments 2

An intertemporal utility maximisation problem yields the following �rst-order
condition:

E

"(
�

�
Ct+1
Ct

��

(1 +Rt+1)

)
zt

#
= 0;

where Ct denotes consumption in period t, Rt+1 is the return on �nancial wealth,
� is the discount rate, 
 is the coe¢ cient of relative risk aversion, and zt is an
m� 1 vector of valid instruments.
(a) Assuming you have a time series of n observations on consumption, the

rate of return, and the instruments, explain how the moment conditions above
can be exploited in order to estimate 
 and � consistently.
(b) What is the minimum number of moment conditions that is required in

(a)? Are there any gains to be made by having more moment conditions than the
minimum?
(c) Outline a method for obtaining asymptotically e¢ cient estimates of 
 and

�.
(d) Explain how a test for the validity of the moment conditions can be carried

out.
Answer
(a) � = (
; �)0 can be estimated consistently by GMM choose the � that min-

imises
gn(�)

0Wngn(�)

whereWn is a symmetric positive de�nite weighting matrix and gn(�) is the m�1
vector of empirical moment conditions

gn(�) = n
�1

nX
t=1

"
�

�
Ct+1
Ct

��

(1 +Rt+1)

#
zt = 0

(b) Need m � 2. There may be e¢ ciency gains from using more than the
minimum number of moment conditions.
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(c) When m = 2; b� is the unique solution of gn(b�) = 0: When m > 2; obtain
an initial estimate b�1 using an arbitrary Wn: Using b�1 estimate consistently

S = var
�p
ngn(�)

�
Obtain second round GMM estimate b�2 by setting Wn = S

�1: b�2 is aymptotically
e¢ cient, but the procedure may be interated further.
(d)

J = ngn(b�)0S�1gn(b�) � a �2(m� 2)
Under H0 : valid moment conditions.

2.2.15. Non-parametric

Suppose the data f(yi; xi); i = 1; : : : ; ng, where both yi and xi are scalars, are
generated as

yi = f(xi) + �i; i = 1; : : : ; n;

where f(�) is an unknown, twice di¤erentiable function, E[�ijxi] = 0 and var(�ijxi) =
�2 almost surely, for all i, so that E[yijxi] = f(xi). For any xi, denote the neigh-
borhood of xi consisting of the k nearest neighbors on both sides of xi by Nk(xi).
Note: For the purpose of the computations you are asked to carry out below,
ignore the largest and smallest xi for which these neighborhoods may not contain
k points on one side. Consider the nonparametric k nearest neighbor estimator of
f(xi),

f̂(xi) =
1

2k + 1

nX
j=1

yj1fxj2Nk(xi)g;

where 1fxj2Nk(xi)g = 1 if xj 2 Nk(xi) and 0 otherwise.
(a) Letting x = (x1; : : : ; xn)0, show that

E
h
f̂(xi)

���xi =
1

2k + 1

nX
j=1

f(xj)1fxj2Nk(xi)g

var
�
f̂(xi)

���x� =
�2

2k + 1
:

Answer The �rst results follows from the conditional mean assumptionE[yjjxj] =
f(xj), and the second results follows from the i.i.d. and conditional homoskedastic-
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ity assumptions and the fact that the sum contains only 2k+1 non-zero elements:

E
h
f̂(xi)

���xi =
1

2k + 1

nX
j=1

E[yjjxj]1fxj2Nk(xi)g

var
�
f̂(xi)

���x� =
1

(2k + 1)2

X
xj2Nk(xi)

var(yjjxj) =
�2

2k + 1
:

(b) Suppose jxi � xjj = � > 0 for all neighbors xi and xj, i.e. the distance
between all x values is the same. Using a Taylor�s series expansion of f(xi) about
xj, i.e.

f(xi) � f(xj) + f 0(xi)(xi � xj) +
1

2
f 00(xj)(xi � xj)2;

and the fact that 1 + : : :+ (k� 1)2 + k2 � 1
3
(k3 � 1), show that the bias of f̂(xi),

conditional on x, is

E[f̂(xi)jx]� f(xi) � cf 00(xi)�2k2;

for some constant c (which you do not have to specify). Answer

E
h
f̂(xi)jx

i
=

1

2k + 1

X
xj2Nk(xi)

f(xj)1fxj2Nk(xi)g

� 1

2k + 1

X
xj2Nk(xi)

�
f(xi) + f

0(xi)(xi � xj) +
1

2
f 00(xi)(xi � xj)2

�
= f(xi) +

1

2k + 1
f 0(xi)

X
xj2Nk(xi)

(xi � xj)

+
1

2k + 1

1

2
f 00(xi)

X
xj2Nk(xi)

(xi � xj)2

= f(xi) +
1

2k + 1
f 0(xi)� [�k � (k � 1)� : : :+ k]

+
1

2k + 1

1

2
f 00(xi)�

22
�
1 + : : :+ (k � 1)2 + k2

�
� f(xi) +

1

2k + 1
f 00(xi)�

21

3
(k3 � 1)

) E
h
f̂(xi)jx

i
� f(xi) = cf 00(xi)k

2�2;
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for some constant c.
(c) Show that if � is proportional to 1

n
, then the value of k that minimizes the

conditional mean squared error of f̂(xi) is proportional to n
4
5 .

Answer The conditional MSE is equal to the sum of conditional variance and
squared conditional bias, so that

MSE
�
f̂(xi)

���x� = �2

2k + 1
+ [cf 00(xi)]

2
k4�4 ! min

k
!

Except for irrelevant constants, this is the same as

c1
k
+ c2k

4�4 =
c1
k
+ c2k

4n�4 ! min
k
!;

for some constants c1 and c2. This yields k? / n
4
5 .

(d) At which rate (expressed as a function of n) does the conditional mean
squared error converge for the minimizing value of k?
Answer It follows from (c) that the conditional MSE is proportional to n�

4
5 .

2.2.16. GARCH 2

Using US annual data 1873 � 2000 on log stock prices, lst an ARIMA (1,1,0)
model was estimated

�lst = �+ ��lst�1 + "t

and a test for second order ARCH gave a p value of 0:0472: The equation was
re-estimated assuming GARCH(1.1) errors, i.e. assuming that "t � N(0; ht) with

ht = $ + �"
2
t�1 + �ht�1:

The estimates (standard errors in parentheses) are � = 0:043 (0:016); � = 0:071
(0:109); $ = 0:007 (0:007); � = 0:0149 (0:092); � = 0:625 (0:0291):
(a) Explain how a test for second order ARCH is conducted.
(b) Explain how the GARCH(1,1) model is estimated
(c) What are the conditions required for the variances to be non-negative? Are

they satis�ed in this case?
(d) Comment on the signi�cance of the ARIMA and GARCH coe¢ cients.
Answer
(a) estimate the ARIMA model and get residuals b"t the estimate

b"2t = a+ b1b"2t�1 + b2b"2t�2 + vt
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and test the joint hypothesis b1 = b2 = 0. (b) It can be estimated by maximum
likelihood, since the log likelihood function is

MLL = �T
2
ln 2� � 1

2

TX
t=1

lnht �
1

2

TX
t=1

"2t
ht

and this can be maximised with respect to the unknown parameters determining
"t and ht:(c) Requires $; � and � all to be positive, this is satis�ed in this case.
(d) In the expected value equation, the drift is signi�cant the AR1 coe¢ cient is
not in the variance equation the ARCH term is not signi�cant but the GARCH
term is very signi�cant and quite large; so the variance is a very persistent process.
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2.3. Applied Exercise.

2.3.1. Data

This exercise is designed to teach you to use a variety of di¤erent estimators in
EViews and interpret the output. Although we give instructions for EViews, but
you can use any program you wish to analyse the data.
The data is in an Excel �le: Shiller.xls; on
http://www.econ.bbk.ac.uk/faculty/smith
under courses, data for exercises.
If you are in the workstation room, the �le is Shiller.xls in G:ems data; eviews

courses.
The �le contains annual US data from 1871 to 2000 on
ND nominal dividends for the year
NE nominal earnings for the year
NSP nominal standard and poors stock price index, January value
PPI producer price index, January Value
R average interest rate for the year
The data is updated from Robert J Shiller �Market Volatility�, MIT Press

1989 and we will use it to re-examine the hypotheses in a famous paper J Lintner
�Distribution of Income of Corporations among Dividends, Retained Earnings and
Taxes�, American Economic Review May 1956.

2.3.2. Getting Started in EViews

Click on EViews icon.
Click on File, New, Work�le.
In the dialog box specify annual data, and put 1871 2000 in the boxes for

beginning and end.
You will then get a box with two variables, C for the constant and Resid for

the residuals.
Choose File, Import, Read Text Lotus Excel.
In the dialog box where it asks for Names or numbers type 5, and OK. Notice

that it will start reading data at B2. This is correct, column A has years, which
it already knows and row 1 has names, which it will read as names You will see
the �ve variables in the work�le box.
You can save this �le and any changes to it to disk, if you want to work at

home.
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2.3.3. Data Analysis

Highlight ND and NE in the box. Click Quick, Graph, Line Graph, OK the two
variables and you will get a graph of dividends and earnings. Were there occasions
when �rms paid out more in dividends than they earned? After looking at it, close
it and delete it. You could save it if you want.
In looking at data, it is often useful to form ratios. Graph NSP. Notice how

the trend dominates the data. Three useful �nancial ratios are the Price-Earnings
Ratio, PE = NSP=NE; the dividend yield, DY = ND=NSP and the payout
ratio, PO = ND=NE: All of these remove the common trend in the variables and
are more stationary.
Generate transformations of the data to create new series
Type Quick, Generate Series and type into box
PE=NSP/NE
Press OK. Do the same for DY and PO and graph them. On which series can

you see the e¤ects of World War I, the 1929 crash, World War II, the Oil shock
of 1973? Plot the three ratios. Are there shifts in the average levels of the three
ratios? Look at the Price Earnings Ratio, Payout Ratio and Dividend Yield for
the 1990s.
Get summary statistics on the ratios. Click on the series name, choose view,

descriptive statistics, histogram and stats. This will give minimum and maximum
values (check these are sensible), mean, median, skewness (which is zero for a
normal distribution) and kurtosis (which is 3 for a normal distribution) and the
JB test for the null hypothesis that the distribution is normal.
Always graph the data and transformations of it and look at the descriptive

statistics before starting any empirical work. Make sure series are in comparable
units before putting them on the same graph.

2.3.4. Regression

We are going to work with the logarithms of the data. Type Quick, Generate
Series and type into box
LD=LOG(ND)
And OK. You will get a new series in the box LD. Similarly generate
LE=LOG(NE)
LSP=LOG(NSP)
Run a static regression
Click, Quick, Estimate an Equation, Type in
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LD C LE
Always look at the dialogue window and note the options. Notice the default

estimation method is LS- Least Squares (NLS and ARMA). NLS is non-linear least
squares, arma, autoregressive moving average. We use these below. If you click
the arrow on the right of LS, you will see that there are other methods you could
choose: including Two stage Least Squares and GARCH, which we will use below.
There is an option tag at the top, which you can use to get Heteroskedasticity and
Autocorrelation Consistent (HAC) Standard Errors. You could also have entered
Log(ND) C Log(NE).
Click OK and you will get the following output

Dependent Variable: LD
Method: Least Squares
Date: 07/29/05 Time: 13:26
Sample (adjusted): 1871 1999
Included observations: 129 after adjustments

Variable Coe¢ cient Std. Error t-Statistic Prob.

C -0.434900 0.018699 -23.25741 0.0000
LE 0.874196 0.011825 73.92920 0.0000

R-squared 0.977291 Mean dependent var 0.026989
Adjusted R-squared 0.977112 S.D. dependent var 1.323178
S.E. of regression 0.200179 Akaike info criterion -0.363824
Sum squared resid 5.089111 Schwarz criterion -0.319486
Log likelihood 25.46668 F-statistic 5465.527
Durbin-Watson stat 0.874621 Prob(F-statistic) 0.000000

Both the constant and the coe¢ cient of LE are very signi�cant, t ratios much
bigger than 2 in absolute values and p values (Prob) of zero. The P value gives
you the probability that the null hypothesis (in this case that the coe¢ cient is
zero) is true. It is conventional to reject the null hypothesis if the p value is less
than 0.05. However the Durbin Watson Statistic (which should be close to 2) of
0.87 indicates severe serial correlation that suggests dynamic misspeci�cation.
Type View; Actual Fitted Residual; Actual Fitted Residual Graph and you

will get a graph of the residuals in blue and the actual in red and the �tted in
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green. Notice that there are two toolbars, an inner one on the equation box and an
outer one on the work�le box. To copy, highlight what you want to copy; use the
edit button on the outer work�le box and click copy. You can then paste this into
a Word File. The graph shows that the residuals are not random, there are quite
long runs where the actual is above or below the �tted and there are some big
spikes, larger positive residuals than one would expect, where the actual is much
higher than the �tted. These were cases where earnings dropped sharply, but
dividends did not respond, because dividends were smoothed relative to earnings.

2.3.5. Regression Output

Programs will give you:
Estimates of the coe¢ cients, their standard errors, t ratios (ratio of coe¢ cient

to the standard error which is the test statistic for testing the null hypothesis
that the coe¢ cient is zero) and perhaps p values for the null hypothesis that the
coe¢ cients are zero.
Various descriptive statistics such as the mean of the dependent variable y =PT
t=1 yt=T; and its standard deviation

sy =

vuut TX
t=1

(yt � y)2=(T � 1)

The Sum of Squared Residuals:

TX
t=1

bu2t
the standard error of regression:

s =

vuut TX
t=1

bu2t=(T � k)
where k is the number of regressors. The ordinary coe¢ cient of determination
and the version corrected for degrees of freedom (R bar squared):

R2 = 1�
PT

t=1 bu2tPT
t=1(yt � y)2

; R
2
= 1�

PT
t=1 bu2t=(T � k)PT

t=1(yt � y)2=(T � 1)
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R2 measures the proportion of variation in the dependent variable yt explained
by the regression. An F test for the hypothesis that all the slope coe¢ cients (i.e.
other than the intercept) are equal to zero:

[
PT

t=1(yt � y)2 �
PT

t=1 bu2t ]=(k � 1)PT
t=1 bu2t=(T � k) ~ F (k � 1; T � k)

The Maximised Log-likelihood and some model selection criteria such as Schwarz
or Akaike are often given (see theoretical notes). Note that EViews and M�t
use di¤erent formuale for these model selection criteria. In Eviews you choose
the model with the smallest value, in M�t you choose the model with the largest
value.
The Durbin Watson statistic is

DW =

PT
t=2�bu2tPT
t=1 bu2t

This measures serial correlation in the residuals. It should be about 2 and is
roughly equal to 2(1 � �) where � is the serial correlation coe¢ cient. It is only
appropriate for �rst order serial correlation when there are no lagged dependent
variables in the equation. Use an LM test otherwise.

2.3.6. Dynamic Linear Regression

Given that the serial correlation in the original regression suggested dynamic
misspeci�cation, we add lagged values, denoted by (-1) in EViews.
Click, Quick, estimate equation and type in
LD C LE LE(-1) LD(-1) @TREND
@trend, is a variable that goes 1,2,3, etc. You will get estimates of the equation,

these are rounded,

dt = �0:19 +0:27et +0:62dt�1 +0:06et�1 +0:0007t
(0:04) (0:03) (0:04) (0:04) (0:0006)

with sample 1872-1999 (one observation was lost for lags) R2 = 0:996 and
SER = 0:083: This �ts much better, average error of 8:3%; rather than 20%
above. All but lagged earnings and the trend are individually signi�cant. The
Durbin Watson is much better at 1.765.
Click View on the equation box; then Actual Fitted Residual; then Actual

Fitted Residual Graph. The estimates of the residuals still show some outliers,
big errors.
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Misspeci�cation/Diagnostic tests Click View on the equation box, choose
Residual Tests, Serial Correlation LM tests, and accept the default number of lags
to include 2. You will get the LM serial correlation test. Note that neither lagged
residual is individually signi�cant (t value less than 2, p value >0.05) nor are they
jointly signi�cant F stat p value is 0.19. So we do not have a serial correlation
problem with this equation. On diagnostic tests, the null hypothesis is that they
are well speci�ed, p values below 0.05 indicate that there is a problem.
Click View, Residual tests, histogram- normality test. You will get the his-

togram and in bottom right the JB test of 56.59 and a p value of 0.0000. There
is clearly a failure of normality, caused by the outliers.
Click View, residual, White Heteroskedasticity (no cross terms) p value is

0.24977, so no indication of heteroskedasticity, i.e. we do not reject the hypothesis
of constant variance.
There are a range of other diagnostic tests available, e.g. for structural breaks,

we will look at below. Diagnostic tests examine whether the assumptions made
about the errors hold. The null is always that the model is well-speci�ed: the
assumption, e.g. normality, holds.

Speci�cation tests Given that the model is well-speci�ed, questionable in this
case, we can test restrictions on the coe¢ cients of the model to develop a new
speci�cation.
Click View, coe¢ cient tests, redundant variables, enter
LE(-1) @trend
OK, you will get and F statistic and p value and a Likelihood Ratio test and

p value, both the p values are over 0.2, so we cannot reject the joint hypothesis
that the coe¢ cients of both these variables are zero. Thus we can exclude them
from the equation. It gives the equation with them excluded, note the estimates
from this.
Click View, coe¢ cient tests, Wald and type in to the box: C(3)=0,C(5)=0.

This is exactly the same restriction as we tested above and we get the same answer
from the Wald, that we can accept the two restrictions, with a Chi-squared p value
of 0.2231.
Wald can also handle non-linear restrictions. Click View, coe¢ cient tests,

Wald again and type in: (C(2)+C(3))/(1-C(4))-1=0. This tests that the long-
run coe¢ cient on log earnings equals unity. Click OK. The hypothesis is clearly
rejected with Chi-squared p value of 0.0017. Wald tests are not invariant to how
you write non-linear restrictions. We could have written the same restriction:
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C(2)+C(3)+C(4)-1=0. This gives a Chi-squared p value of 0.0068, so we still
reject. But there are cases where writing the restriction one way leads to rejection
and another way to acceptance.

2.3.7. Theoretical background.

Lintner suggested that there was a target or long-run dividend pay-out ratio, say,
�; such that D�

t = �Et: We will take logs of this relationship, using lower case
letters for logs, e.g. dt = log(Dt), etc. Notice natural logs are almost universally
used. Taking logs we get d�t = log(�)+ et. This can be written in an unrestricted
form as d�t = �0+ �1et; where his theory suggests that �1 = 1 and �0 = log(�): To
this he added a �Partial Adjustment Model�(PAM) and a random error

�dt = �(d�t � dt�1) + ut
dt = ��0 + ��1et + (1� �)dt�1 + ut:
dt = b0 + b1et + b2dt�1 + ut

The PAM can be justi�ed if, for instance, �rms smooth dividends, not adjusting
them completely to short term variations in earnings. We estimate the bi; as in
the equation above, and then work out the theoretical parameters from them:

� = 1� b2; �1 = b1=(1� b2); �0 = b0=(1� b2):
Over the period 1872-99 b1 = 0:30; b2 = 0:67 as we saw from the restricted
model above, so � = 0:33 and �1 = 0:30=0:33 = 0:91. Notice that if we impose
the further restriction �1 = 1 the model can be estimated after creating a new
variable earnings minus lagged dividends as:

�dt = a0 + a1(et � dt�1) + vt:
More general adjustment processes such as Error Correction Models (ECM) can
be used and other variables, e.g. in�ation and stock market prices included. The
model above is in terms of nominal dividends and earnings, it could be done in
terms of real dividends and earnings with rdt = dt � pt, and written:

dt � pt = b0 + b1(et � pt) + b2(dt�1 � pt�1) + ut
removing the restrictions gives the unrestricted model:

dt = c0 + c1et + c2pt + c3dt�1 + c4pt�1 + vt:

The restricted model has three parameters, the unrestricted model has �ve para-
meters, so there are two homogeneity restrictions: c1 + c2 = 1; c3 + c4 = 0: Check
this by working out the ci in terms of the bi:
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2.3.8. Misspeci�cation tests on the Partial Adjustment Model

Re-estimate the partial adjustment model: enter D(LD) C LE LD(-1) in the
equation box. You should get the estimates (standard errors), rounded, for 1872-
1999

�dt = �0:129 +0:302et �0:330dt�1
(0:015) (0:0234) (0:027)

with R2 = 0:567; SER = 0:083; DW = 1:847; with long run coe¢ cient �1 =
�0:302=0:330 = 0:91:
On the equation box, click View, then Residual tests, there will be a range

of choices. Click Histogram-normality. You will get the histogram, which shows
outliers, plus a range of statistics, with at the bottom the J�B = 73:65, p = 0:000:
This indicates that the hypothesis that the residuals are normally distributed is
rejected.
Click View, residual tests, serial correlation LM test, accept the default of two

lags, you will get p = 0:194 on the F version, so we do not reject the null of no
serial correlation. Notice the regression used to conduct the test is given below.
RESID is the residuals.
Click View, residual tests, ARCH-LM, accept default one lag, p = 0:258 on F

version. So we accept the null of no Autoregressive Conditional Heteroskedasticity.
The regression to conduct the test is given below.
Click View, residual tests, White Heteroskedasticity (no cross-terms), we get

p = 0:0396: So we reject the null of homoskedasticity (no heteroskedasticity). The
regression to conduct the test is given below. The t on LE is signi�cant.
Note that the ARCH and White tests have the same null, homoskedasticity,

but di¤erent alternatives (di¤erent forms of heteroskedasticity). The form of the
test is the same in regressing squared residuals on a set of regressors, the regressors
di¤er between the two tests.
Click View, stability tests, Ramsey Reset tests, put the number of �tted terms

at 2, p = 0:951. So we do not reject the null of linearity. Look at the regression
below.
If you wanted to test for a change in the parameters at a particular date, you

would use the Chow Stability tests, specifying the date at which you thought
the relationship changed. The Breakpoint tests for equality of the regression
coe¢ cients before and after the break, assuming the variances in the two periods
are constant. The Forecast tests whether the estimates for the �rst period forecast
the second period.
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Click View, stability tests, recursive estimates and choose CUSUM. This gives
you a graph, which looks OK, the test statistics do not cross the con�dence inter-
vals, so no evidence against structural stability.
Click View, stability tests, recursive estimates and choose CUSUM of squares.

This gives you a graph, which where the test statistics do cross the con�dence
intervals, so this suggests that there is evidence against structural stability.
Diagnostic tests for the same null hypothesis (e.g. homoskedasticity or struc-

tural stability) can give con�icting results because they are testing against di¤erent
alternative hypotheses.

2.3.9. Estimate the Partial AdjustmentModel by Non-linear Least Squares

Close the equation, you could name it and save it, and click, quick, estimate an
equation again, type in
D(LD)=c(1)*(c(2)+c(3)*LE-LD(-1))
The D(. . . ) �rst di¤erences the data on LD. This estimates the partial adjust-

ment model giving estimates of the long-run parameters and speed of adjustment
directly: c(1) = �; c(2) = �0; c(3) = �1; . You should get parameter estimates for
the speed of adjustment and long-run parameters identical to those derived from
the restricted linear model, � = 0:33 and �1 = 0:91.
The R squared is lower (0.56) because here we are explaining the change in

log dividends (the growth rate of dividends) not the level of log dividends. The
long-run elasticity of dividends to earnings is 0.91 and signi�cantly di¤erent from
unity, the speed of adjustment is 33% a year. This is the same equation as we
had above, with exactly the same standard error of regression.
However you may get completely di¤erent estimates. This is because the

likelihood function has multiple maxima and when the starting values are set at
c(1)=0 c(2)=0 c(3)=0, it goes to this local maximum. It has MLL = 88:24;
compared to the other maximum of 137:7; the parameters large negative numbers
and a R2 = 0:06: To get the global maximum we need to set other starting values.
The local maximum is quite close to zero, so even starting the coe¢ cients a little
bit positive will solve the problem. To do this type
param c(1) 0.05 c(2) 0.0 c(3) 0.05
in the command window at the top under the toolbar. With these starting

values it will get to the global maximum. When doing non-linear estimation,
try to start with sensible starting values, using the economic interpretation or
preliminary OLS regressions to give you sensible values. Also experiment with
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di¤erent starting values.

2.3.10. Estimate the Partial Adjustment model allowing for non-normality
and ARCH.

Above we estimated the model

dt = b0 + b1et + b2dt�1 + ut

on the assumption that ut s IN(0; �2): But there was evidence that the errors
were non-normal and this was mainly caused by excess kurtosis. Now we are
going to assume that ut s It(0; ht; �); the errors are independent with a student
t distribution, expected value zero, a time varying variance E(u2t ) = ht; and
degrees of freedom �: The degrees of freedom determine how thick the tails of
the distribution are. If � is small, the tails are much fatter than the normal
distribution, if v is around 30, it is very similar to the normal. The form of time
varying variance we will use is GARCH(1; 1)

ht = c0 + c1bu2t�1 + c2ht�1 + "t
Close or save any equations. Click quick, estimate an equation, enter D(LD) C LE
LD(-1) and then change method from LS to ARCH using the arrow on the right
of the method box. You will now get a GARCH box. Change error distribution
from Normal to Student�s t. Accept the other defaults, click OK. The estimates
of the equation are

�dt = �0:074 +0:203et �0:220dt�1
(0:011) (0:016) (0:018)

the estimates of the variance equation are

ht = 0:0002 +0:304bu2t�1 +0:740ht�1
(0:0002) (0:198) (0:105)

with v = 3:24:
The short-run coe¢ cients are rather di¤erent from the OLS estimates, indi-

cating much slower adjustment and a smaller short-run elasticity of dividends to
earnings. But the long run estimate of the elasticity of dividends to earnings
�1 = �0:203=0:220 = 0:92 is very similar to our earlier estimate 0:91. The ARCH
term c1 is not signi�cant t = 1:5, but the GARCH term c2 is very sign�cant
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t = 7:06: The ARCH(1)-LM test that we did above sometimes does not have very
much power against GARCH. The estimate of v is very small, close to the lower
limit, indicating very fat tails relative to a normal distribution.

2.3.11. Estimate ARIMA models

Estimate a random walk model for log stock prices, up till 1990; then an ARIMA
model and use it to forecast. Use quick estimate an equation, set the sample to
1873-1990 and type in
D(LSP) C.
You should get an estimate of the drift (C ) 0.036, MLL=37.42, s=0.177.
Estimate an ARIMA(1,1,1) model for log stock prices.
Click estimate on the equation equation bos, check the sample is 1873 1990

and type in
D(LSP) C AR(1) MA(1)
You will get estimates with MLL=41.19, s=0.173. Notice that both the AR

(t=-3.06) and MA (t=5.50) terms are signi�cant. Click forecast on the equation
box. Set the forecast period to 1990 2000 look at the graph. It will save the
forecast as LSPF. Close the equation and graph LSP and LSPF. This is clearly a
terrible forecast, you will see that the actual and predicted steadily diverge over
the 1990s.
Although the AR andMA terms are individually signi�cant, they do not reduce

the standard error of the regression very much relative to a random walk, and on a
likelihood ratio test they are jointly signi�cant, 2(41.19-37.42) LR=7.54 compared
to a �2(2) at the 5% of 5.99 but not at the 1% of 9.21. This may be a common
factor which cancels out.

2.3.12. Testing for Unit Roots

Click on LSP, then view, then unit root tests. You will get a dialogue box.
Leave the test as Augmented Dickey Fuller (there are lots of other alternatives),
choose level, choose intercept and trend, choose Akaike, leave maximum lags at
12. Choose OK. You will get the ADF test results. The ADF statistic is -0.026,
much greater than the 5% critical value of -3.446 (given on the program output).
Below is given the regression that was run to get the results. Notice that the
lag length is 5 and that the test statistic is just the t ratio on LSP(-1) in the
regression.
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Repeat the process (choose view, unit root test) set if for �rst di¤erence rather
than level, choose just intercept. The lag length chosen is 3. The ADF is -6.09
which is much smaller than the 5% critical value of -2.88. Note that the critical
values are di¤erent depending whether or not you have a trend.
We cannot reject a unit root for LSP but we can for the �rst di¤erence of

LSP, therefore LSP is clearly I(1). In practice, unit root tests are not always as
clear-cut as this.

2.3.13. VAR, cointegration and VECM

Use Quick, estimate VAR and you will get a dialogue box. Enter LD LE as
endogenous variables. In the list of exogenous variables add @trend to C. Accept
the defaults for everything else. This will give you a second order unrestricted
VAR with intercept and trend. Notice: both trends are signi�cant; the second
lags of both variables are insigni�cant; LD(-1) is insigni�cant in the LE equation.
Click View, lag structure, lag length criteria and accept the default maximum lag
of 8. You will get a table which shows that everything except the LR indicates
that one lag is optimal. The optimal value has a star beside it. Choose View, lag
structure, Granger Causality test. LE is clearly Granger causal for LD, but LD is
not Granger Causal for LE p=0.330. This �ts with the individual tests, LD(-1)
and LD(-2) are both insigni�cant in the LE equation.
Choose estimate from the equation box and replace 1 2 by 1 1 in the lag

intervals box Look at the new estimates. Choose View, impulse responses, click
the impulse de�nition tab at the top, choose generalised impulses. These graphs
show the e¤ect of a shock to each variable on itself and on the other variable. The
generalised impulse response function assumes that the shocks have the estimated
correlation in the sample, the Choleski uses an assumed causal structure for the
shocks. LD shows a humped shaped response to a shock to LE, which remains
signi�cantly positive for 10 years. LE shows an immediate response to a shock to
LD, through the contemporaneous covariance matrix, but it declines to zero.
Click, View, lag structure, AR roots, graph. It shows two inverse roots within

the unit circle. Both roots are real (no complex component shown on the y
axis). If a trend is not included in the VAR, it shows one on the unit circle
and one within, which suggests that there may be one stochastic trend and one
cointegrating vector. Click View, cointegration tests, and click the bottom button,
option 6, summarise all 5 sets of assumptions and exclude @trend from the list of
exogenous variables (the assumptions about the deterministic components allow
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for a trend). Make sure that the lag order is 1 1. There are two tests, Trace and
Maximal Eigenvalue, and 5 sets of assumptions about the determinist structure.
Except for the case with a quadratic trend, all tests and assumptions about the
deterministic elements indicate one cointegrating Vector. The information criteria
are given below. From the stars, you can see that Akaike chooses one cointegrating
vector (equation) and quadratic trend, Scwarz chooses one cointegrating vector,
linear, intercept, no trend. Notice that EViews uses di¤erent conventions for lag
length in the VAR and VECM case.
Suppose we maintain our PAM model for dividends,

�dt = �(�0 + �1et � dt�1) + ut:

There are two possible models for earnings, given that lagged dividends do not
in�uence earnings: trend stationary, with long run trend growth �1

�et = a(�1t� et�1 + eo) + "1t

or di¤erence stationary, with long run trend growth �2 :

�et = �2 + "2t

Assuming � > 0 as seems the case, with a trend stationary model and a > 0; both
roots lie outside the unit circle. With a di¤erence stationary model, there is one
root on the unit circle, one stochastic trend, and one root outside the unit circle,
one cointegrating vector. With the di¤erence stationary model the VECM is

�et = �1 + "2t

�dt = �(�0 + �1�2) + �(�1et�1 � dt�1) + [ut + ��1"2t]

Click Estimate on the equation box, choose Vector Error Correction rather
than VAR, click the cointegration tab at the top and choose option 3, set the lag
length to 0 0 and press OK. VECM 0 0, corresponds to VAR 11, in Eviews. You
could also choose the number of cointegrating vectors, but leave it at the default
of one. You will get the VECM estimates. The coe¢ cient of earnings �1 = 0:91 is
very similar to what we got with the partial adjustment model, but this may be
coincidence. You would clearly reject the hypothesis that the long-run elasticity
was unity, t = (0:914�1)=0:014 = �6:1: View, Cointegration Graph, will give you
a plot of the cointegrating relation, a measure of the deviation from equilibrium:
dt � �0 � �1et.
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You can impose restrictions on the cointegrating vectors and adjustment co-
e¢ cients using the tab at the top marked VEC restrictions. Click impose restric-
tions and then type B(1,1)=1,B(1,2)=-1. This imposes a long-run unit coe¢ cient
of unity on earnings. Click OK. You will get the restricted estimates and a Like-
lihood ratio test that indicates that the restriction is rejected, as we determined
above.

2.3.14. Two stage Least squares & Wu-Hausman test

Above we estimated a partial adjustment model by regressing log dividends on
log earnings and lagged log dividends. The evidence of the VAR suggests that
earnings may be treated as exogenous, since there was little feedback from lagged
dividends to earnings. However, if E(ut"t) 6= 0; this may cause et to be correlated
with ut: We now investigate this.
First re-estimate the PAM by OLS, i.e. run LD C LE LD(-1) using LS over

the period 1871-1999, it will use 1872-1999, since one observation is lost for the
lag. The coe¢ cient on LE is 0.301918 with a standard error of 0.023779.
Click estimate on the equation-box toolbar, change the method from LS to

TSLS, you will get a new dialogue box with two windows. Leave the upper
equation one the same and in the lower one for instrument list enter: C LE(-1)
LD(-1) @trend. Click OK and you will get the TSLS estimates. The coe¢ cient
of LE is 0.344658 with a standard error of 0.035905. Thus the OLS and TSLS
estimates do not look signi�cantly di¤erent, the TSLS estimate�2 standard errors
covers the LS estimate.
We can test this formally with a Wu-Hausman test. Estimate by OLS: LE

C LE(-1) LD(-1) @TREND. This gives us the same estimates as we got for the
LE equation from the VAR 1 with intercept and trend. The VAR is the reduced
form. This is the �rst stage of two stage least squares. You should always check
this �rst stage, to see whether the instruments explain the endogenous variable,
in this case E(-1) and @TREND are very signi�cant. Close the equation, use
Quick, Generate and de�ne ULE=RESID. This saves the residuals from the �rst
stage (reduced form equation for LE) as ULE. Then use OLS to estimate LD C
LE LD(-1) ULE. The coe¢ cient on ULE is -0.0777 with a t statistic of -1.63, so
we do not reject the hypothesis that we can treat LE as exogenous.
We could also use two stage least squares to estimate a rational expectations

model, in which dividends are determined by expected earnings in the next period,
the expectations based on information in the current period. Click estimate,
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choose TSLS, and type into the equation box: LD C LE(1) LD(-1) and into
the instrument box: C LE LD(-1) @TREND. You will get a coe¢ cient on future
earnings of 0.33. Notice that the sample is 1872 1998, we have lost one observation
at the end of the period, because of the future variable on the right hand side.
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3. Doing your econometric project.

3.1. Introduction

Your applied project accounts for a third of the econometrics marks and past
experience shows that doing the project helps people understand the theoretical
material and pays o¤ in better performance in the exam. Being able to show
potential employers a well presented piece of empirical research also often helps
get a job. You can also extend your project for your MSc dissertation, if you wish.
These notes provide advice on doing the project, ignoring this advice may result
in you being penalised when the project is marked.
During the �rst term you must learn how to produce and interpret regression

output, by doing the applied exercise. At the beginning of the second term you
should you should submit a 100 word outline. The outline should give a prelimi-
nary title, say where you are going to get the data and indicate the sort of model
you will use in terms of dependent and independent variables. You have no formal
supervisor but you should talk with one of the teachers at least once to discuss
what you are doing.
Try to write up what you are doing as you go along and build in an �audit

trail�. It is very easy to make mistakes and to forget what you did, having records
and documentation is essential. Make notes of exact references when you read
articles, trying to search through the library for the reference at the last moment
is a waste of time. Date your drafts so you can identify them and do not submit
an old version by mistake.
Make sure that you keep multiple back-ups of your data and drafts

(e.g. on College server, your hard drive and a USB stick). You can lose
computer �les in lots of di¤erent ways and it is a lot of work redoing
everything. We hear about a lot of computer disasters as the deadline
approaches and we will not be sympathetic if you are having trouble
completing because you did not back-up properly.

3.1.1. Format

� The completed project must be handed in at the end of the �rst
week of the third term. Staple it together but do not put it in a
binder or folder.

� The maximum length of the project is 5,000 words, we stop read-
ing after that. Tables, graphs and technical appendices are not
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included in this total.

� The data you used should be provided on disk, CD or memory
stick, with your name on it, in an envelope, which also has your
name on it, stapled to the back of the project. You can use any
program, but the data must be provided in a way that allows us
to replicate your results.

� The �rst page of the project should have;

title,
abstract,
your name,
the programme you are following (MSc Econ, PGCert Econometrics,

etc),
the computer programs you used (e.g. Micro�t, EViews, Stata,

Excel) and
a word count.

� The pages should have page numbers.

� The project should be divided into properly titled sections, with
an introduction and conclusion.

� The project should have a clear description of the data: sources
and de�nitions, measurement units, graphs, etc.

� The project should look and read like and academic article with
references to the literature presented in a standard academic form
and listed in a bibliography.

� Do discuss the project with other students, people at work, etc.
But the project must be your own work. Plagiarism is heavily
penalised and more di¢ cult to get away with than you may think.
If in doubt, ask advice from the sta¤. We interview a selection of
students to check that their project is their own work.
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3.1.2. Advice

Applied Econometrics involves a synthesis of data, economic theory and statistical
methods to develop a model which can be used for some substantive purpose (e.g.
to forecast, design policy, test theory, etc). Therefore you need to know how
to: choose a topic; get the data; develop a theoretical model; use the statistical
techniques on the computer; and write up the results in a way that convinces the
reader that you have done something useful. You do not have to get a �good�
model, that is often a matter of luck. Do not be surprised if you cannot get a
good model (right signs, passing misspeci�cation tests) for a standard equation.
The published results are often based on a lot of data mining (experimenting with
di¤erent samples, estimation methods, variables including dummy variables) and
the ones that do not work even after all this do not get published.
Do not paste program output into the text of the project, summarise it prop-

erly in equations or tables. Program output can be included in an appendix if
necessary. Read empirical articles and try to copy their style and approach.
We do not assess you on the product, the quality of the �nal model, but on

the process. We do this under �ve categories: data, economic (or other) theory,
econometric analysis, presentation, written style. There is some substitution, e.g.
if you put a lot of work into collecting or constructing the data we will give you
extra credit for that, but there are diminishing marginal products, so make sure
you put e¤ort into all �ve elements. Remember that when we mark the project,
we have the data you used. It is very easy for us to check what you did and what
you missed doing and we do check.

3.2. Stages of doing your project

3.2.1. Choose a topic and get data

You can choose any topic, it does not have to be directly economic. Your choice
of topic will be mainly constrained by availability of data. You cannot do applied
econometrics without data, therefore your �rst objective is to �nd the data.
Part-time students often do work-related projects, where the data comes from

their employer. We keep the data con�dential, the project is not seen by anyone
except the examiners. Note that it is very likely that the style you write the
project in will be very di¤erent from the style you would use at work. If you do a
work related project make sure you explain any abbreviations or technical terms
that we might not be familiar with.
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Foreign students often do projects replicating standard models estimated for
the US or UK on data for their own country. Replicating published articles is
a good source for projects, however you should note that it is often di¢ cult to
replicate published articles; see Dewald et al. (1986). Be aware that there are
often mistakes in published articles. You could do the same model for a di¤erent
time-period, country or industry and try and improve on the published model.
Use the search engines to track down papers on subjects you are interested in.
There are a large number of possible data sources on the web, use Google or

another search engine. Good sources are IMF International Financial Statistics;
the World Bank data base: US data at the St Louis Fed or Bureauc of Economic
Analysis or UK data at ONS. We also have a range of other databases on the
Birkbeck eLibrary, including Datastream available in the Library.
Give the source and exact de�nition of any data you use and ensure you un-

derstand it. Just de�ning a variable as in�ation is unacceptable; the reader needs
to know at the minimum whether it is a percentage change or the change in the
logarithm, at which frequency, whether it is the CPI, WPI, GDP de�ator, etc..
Learn national accounts terminology, e.g. �Investment�is usually Gross Domestic
Fixed Capital Formation. Are the variables in current or constant prices? what
currency? are they seasonally adjusted? what is the coverage (e.g. UK or Great
Britain)? have the de�nitions (or coverage e.g. German reuni�cation) changed
over the sample period? Remember the ratio of a current price series to a constant
price series is a price index.
In general the more observations the better, but 25 is a minimum. Be cautious

about using large data sets, over 1,000 observations, unless you are familiar with
handling them. Keep an eye on degrees of freedom as a rough rule of thumb the
maximum number of parameters you should try and estimate is one third of the
number of observations. With 25 observations this would be a maximum of 8 and
preferrably fewer.
Do not agonise too long over choosing a topic and once you have started and

got the data together do not be tempted to switch.
The topic should involve explaining at least one variable by some others. The

relationship can be a standard economic one:
explaining a country�s imports by the level of demand, GDP, domestic prices,

import prices and the exchange rate;
explaining consumption by income, in�ation and wealth remembering that the

PIH says its a random walk;
explaining money demand by income and interest rates.
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Many past students have looked at non-economic relationships:
explaining attendance at football matches by ticket prices, the quality of the

teams, hooliganism and the weather;
explaining CO2 concentrations by industrial production and sea temperature;
explaining London Marathon running times by age and sex.
If you do a standard economic topic like consumption and demand for money

functions make sure that you are familiar with the recent literature, do not rely
on the treatment in elementary text-books. If you do a non-standard topic there
may be no literature and you have to provide the relevant context.
Try to identify some precise questions that you will try to answer

from this data.

3.2.2. Getting to know your data.

Once you have got your data and are clear on the exact de�nitions you may have to
adjust them in various ways: interpolate to deal with missing observations, splice
data that are on di¤erent base years or convert them into di¤erent currencies.
Published data are not infallible, look for possible mistakes in the data. Learn
about the context, e.g. relevant history and institutions, to interpret the data.
Whenever you load new data, you should spend a lot of time graphing it, using

line graphs, histograms and scatter diagrams as appropriate. Look for mistakes
(missing observations or errors in the data, for instance). Establish the order of
magnitudes of the data; what values would you expect them to take? Note whether
variables like interest rate or growth rates are proportions or percent and whether
they are at per annum rates. Make notes of the main features of the data. Things
to look for in time-series are: trends, cycles, seasonal patterns, outliers (try and
�nd what caused unusual observations, e.g. wars or devaluations). For trended
time-series look for patterns in growth rates and ratios, which are often stable in
economic time-series. For seasonally unadjusted quarterly data also look at the
year on year growth rate to remove seasonality. Theory often tells you the ratios
to look at: average propensity to consume, velocity of circulation, real exchange
rate, real interest rate, etc. Look at the relative variance of di¤erent series, using
histograms and standard deviations, again usually for growth rates and ratios; the
variance of the level is usually dominated by trends in time-series. In cross-section,
look at the distributions of the variables (histograms), look for outliers, use scatter
diagrams to try and establish the shape of the relationships between variables to
determine functional form and identify heteroskedasticity. The scatter diagrams
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will help you develop the econometric models later.
Notice that although we discuss the theory below, you should be using the

theory to analyse the data at this stage. The theory will tell you what transfor-
mations of the original data are likely to be appropriate, e.g. to construct real
exchange rates or real interest rates from the original data. Very many economic
models use logarithms of the original variables because: economic variables such
as prices and quantities tend to be non-negative; the change in the logarithm is
approximately the growth rate; variances are more likely to be constant (errors are
proportional rather than additive); coe¢ cients can be interpreted as elasticities;
scale does not matter (multiplicative constants are picked up in the intercept) and
many interesting economic restrictions (e.g. homogeneity of degree zero in prices)
can be expressed as linear restrictions on logarithmic models.
As part of the data description for time-series you should check the order of

integration of the variables, using unit root tests. Do not do unit root tests on
cross-section data.
Discuss how your data relate to the theoretical concepts they are supposed to

be measuring. Comment on the quality of the data, much economic data is very
bad. In some case you can create your own data with dummy variables. Where
there are a number of possible measures for a theoretical concept, try to use each
of them and test which is the best.

3.2.3. Develop a Theory

Theory should be interpreted very widely here: what do we know about the process
that might have generated the data? Standard economic theory may tell you what
variables are likely to be relevant: in a demand function: income and own and
other prices will appear on the right hand side. Thus imports would depend
on GDP, domestic prices, foreign prices and the exchange rate. It may tell you
restrictions that can be tested: the demand function should be homogenous of
degree zero in prices. In the case of import demand, this means that the relevant
regressor is the real exchange rate. Theory may tell you about functional form,
but usually does not. If the variables are always positive start with logarithmic
transformations. If the dependent variable is a proportion, say p, lying between
zero and one, consider a logistic transformation: log{p/(1-p)}.
It is often quite di¢ cult to translate pure economic theory into the form of

an equation that can be estimated, but wider theory is often useful in giving you
a starting point. Many economic variables (particularly asset prices like stock
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market prices and foreign exchange rates) should be random walks, and this is a
good starting point. Many theories imply that certain ratios should be constant
in the long run, and this provides a starting point. In time series data it is useful
to think of the theory in terms of three components: a long-run equilibrium,
an adjustment process and a process for forming expectations. Always look for
seasonality in data of frequency less than annual.
A central issue is distinguishing correlation from causality. Angrist and Pischke

(2009) are very good on this. Theory should help with this distinction. Sometimes
you do not want to make causal statements, just forecast. Use your common sense
to develop the theory, ask is this a sensible way of explaining the data, and try to
identify the interesting questions.

3.2.4. Example

It is often useful to use theory to set up a general model which nests the alterna-
tives. Purchasing Power Parity (PPP) says the spot exchange rate, S, (measured
in units of domestic currency per unit of foreign currency) should equal the ratio
of domestic, P, to foreign, P�, prices:

S =
P

P �

(Note the way this is written depends on the way the exchange rate is de�ned,
domestic/foreign or foreign/domestic). In most cases we do not have a cross
section of actual prices (an exception is the Economist Big Mac data), but time-
series on price indexes; P� is a foreign price index and P is a domestic price index
.

S = R
P

P �

R, the real exchange rate, depends on the units of measurement of the price
indices. Using lower case for logarithms, assuming time-series data, and adding a
random error term; we can write this as:

st = r + pt � p�t + vt

This is the restricted equation. Notice that we can estimate vt from a regression
of the log real exchange rate, rt = st � pt + p�t on a constant and use the Sum of
Squared Residuals from this regression as our RSSR. An unrestricted equation is

st = �+ �1pt + �2p
�
t + ut
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and we can get our USSR from this and test the two hypotheses �1 = 1; �2 = �1;
with an F test.
Suppose we do not know what price index to use. We could either use the

Consumer Price Index, p1t or the Wholesale Price Index, p2t. We could decide by
constructing a more general unrestricted model

st = �+ �1p
�
1t + �2p1t + 
1p

�
2t + 
2p2t + et

Then we could choose between the two measures by comparing the restrictions
�1 = 0; �2 = 0; which implies the WPI is the right measure, with 
1 = 0; 
2 = 0
which implies the CPI is the right measure. Hopefully, the F tests will accept one
hypothesis and reject the other. Of course, we might reject both or accept both,
which means that we have to think about the problem a bit more.
Try to use the theory to formulate speci�c questions you want to ask of the

data and organise your write-up around them: does PPP hold? is the CPI or WPI
the right measure to use? etc. In practice, it would be better to ask whether PPP
held in the long-run. This implies that rt = st � pt + p�t should be I(0): It could
also be tested using a dynamic ARDL model. The unrestricted model would be

�st = �0 + �st�1 + �pt�1 + 
p
�
t�1 +

pX
i=1

ai�st�i +

pX
i=0

bi�pt�i +

pX
i=0

ci�p
�
t�i + ut

the restricted model would be:

�st = �0 + �rt�1 +

pX
i=1

ai�st�i +

pX
i=0

bi�pt�i +

pX
i=0

ci�p
�
t�i + ut

This assumes that pt and p�t are weakly exogenous for the long-run parameters,
which could be tested in the context of a VAR.

3.2.5. Estimate some equations

Your examination of the data and review of the theory should have given you some
ideas about designing the models that you will estimate: the variables that you
include, the functional form that you use, questions that you need to answer with
hypothesis tests, the sign and magnitude of the coe¢ cients you expect. Kennedy
(2003, chapter 5 and 21) is good on general speci�cation issues and what to do
when you get "wrong" signs.
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You must organise the estimation process. It is very easy to make
mistakes, being organised makes this less likely. It is very easy to lose �les: make
back-ups on separate disks and establish a system for naming �les and variables.
It is very easy to get buried in vast piles of regression output: organise your
estimation to stop this happening. Getting lost is particularly easy when for each
regression you also calculate diagnostic tests for normality, structural stability,
etc. You do not have to do these diagnostic tests for every equation, but they are
often informative. You need to provide appropriate diagnostics for the equations
you report, but the equations you report will only be a small subset of those
you run. Always look at the graph of �tted values and residuals. This should
be an automatic check to see if there is any suggestion of problems like omitted
variables. In time-series your �rst concern should be about dynamic speci�cation
and structural stability; in cross-sections functional form and heteroskedasticity.
Remember one form of misspeci�cation can show up in the diagnostic test for
another form of misspeci�cation. If there is evidence of misspeci�cation, think
about how you should respecify the model.
Look at the magnitude of the coe¢ cients, short-run and long-run, are they sen-

sible? What values would you expect from theory? An e¤ect may be statistically
signi�cant, but so small as to be economically unimportant. Or large in economic
terms, but imprecisely estimated so not statistically signi�cant. Remember that
our conventional signi�cance levels, like 5% are just conventions, other levels may
be appropriate.
The �rst stage in getting organised is to write up as you go along. Before

you start estimating anything you should have written the �rst draft of the data
analysis and theory sections, with predictions for likely values of the estimated
coe¢ cients. The second stage of getting organised is to be systematic in your
estimation. Design a sequence of estimates in the light of your questions and
record the results in summary tables. It is very easy to forget which model the
picture of the residuals and �tted values corresponds to. Go to the computer with
a plan of what you are going to do organised around the crucial questions and a
draft table to summarise the results. If you have designed a table, you can just
put a cross in the box (or the p value) if it fails the normality test for instance.
Use the simplest estimation method appropriate. If you use complex esti-

mation methods, make sure that you know what the software is doing and can
interpret the output. Report how sensitive your results are to estimation method,
sample used, variables included, etc.
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3.2.6. Write up the results.

The �nal project should read like an academic economic article, not a part of your
autobiography. All the problems you had �nding the data; making the computer
work; trying to understand the articles; your personal crises; do not belong in
the project. Read academic articles to see how they present their results, but
bear in mind that the way research is presented in the literature is not a good
guide to how it was actually carried out. Becker (1986) and McCloskey (1987)
have good advice on writing. Do deals with fellow students to read drafts of each
others projects to see if they are clear and to correct errors. Worry about spelling,
grammar, construction of sentences and paragraphs and try to make the writing
lively and interesting.
The project should have a Title, Your name, An abstract (about 100-200

words), a word count. The pages should be numbered. It should be divided into
sections. Possible sections are:

1. Introduction. This should motivate the questions you are asking, provide
some background and explain why the issue is interesting.

2. Theory. Provide a brief link to the literature, set up the model and any
hypotheses you want to test. Set out the questions you are going to try and
answer.

3. Data. Give exact de�nitions, units and sources; discuss any measurement
problems, how the variables relate to the theoretical concepts; characterise
the basic properties of the data, identify any trends, seasonals, cycles, out-
liers etc; provide any relevant history. You must give some graphs which
summarise the main features of the data. If you miss something which would
be very obvious had you graphed the data we will penalise heavily. For time-
series discuss the order of integration of the data. You may want to include
a separate data appendix with more detail.

4. Statistical Model. Brie�y discuss the estimation methods you are going to
use and why they are appropriate. This involves justifying the assumptions
that you made about the distribution of the error terms. In most cases
you will use Ordinary Least Squares, but you need to justify your choice of
estimator. Do not put text-book material in your project, e.g. proofs that
OLS is BLUE. Just give a reference to the text-book. The project should
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contain all information that we do not know but need to know, not things
we know.

5. Results. Make sure that you organise the presentation of your results
clearly, bringing out the important ones and referring to the others in pass-
ing. For instance, if you tried a variable that proved insigni�cant, just say
you tried it and it proved insigni�cant, you do not have to go into detail.
Think carefully about how you want to present the numerical results, either
as equations in the text or tables. What information do you need to convey?
This will include the estimated coe¢ cients, their standard errors (or their t
ratios or p values, but only one of the three), the standard error of regres-
sion and some diagnostic tests. Make sure you explain your results, e.g. say
whether you give standard errors or t ratios. Look at empirical economics
articles and see how they convey the information. You can put program
(EViews, M�t, etc) output as an appendix, but the main text should convey
the crucial results in a comprehensible form. Make sure that you interpret
the results in terms of the substantive issues and consider both the size of
coe¢ cients and their signi�cance.

6. Conclusions. What did we learn from this project? How were the ques-
tions posed earlier answered? What is their relevance for practical questions
of forecasting, policy etc? Are the answers consistent with theory or insti-
tutional information? Is the model statistically well speci�ed?

7. References. Make sure you follow the standard economic style of referenc-
ing, as in these notes.

8. Appendices. More detailed output or technical derivations which are not
in standard sources can be put as appendices.

3.3. Commandments

These ten commandments of applied econometrics are given by Kennedy (2003).

1. Thou shalt use common sense and economic theory.

2. Thou shalt ask the right question.

3. Thou shalt know the context.
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4. Thou shalt inspect the data.

5. Thou shalt not worship complexity.

6. Thou shalt look long and hard at thy results.

7. Thou shalt beware the costs of data mining.

8. Thou shalt be willing to compromise.

9. Thou shalt not confuse (statistical) signi�cance with substance.

10. Thou shalt confess in the presence of sensitivity.

3.4. General advice

Read, write and think. Keep reading and relate your problem to what is in the
literature. Mankiw Romer, Weil (1992) use the theory very e¤ectively to organise
their results. Fair (1996) is good on forecasting issues. Read more applied articles
and see how the authors did it. Make your project look professional, something
that might get published, many past projects have been published. Potential
employers often ask to see projects, so keep a copy for yourself. Try and follow
the examples of professional writing in the literature. Start writing early and
keep rewriting. Organise your empirical investigation, so you do not get lost.
Back up your computer �les. Focus on particular questions. Explain why these
are interesting questions. Try to make the project clear, brief and interesting.
Make sure you have got the references right, make sure that when you quote from
another paper you put it in quotation marks and give the exact source. Keep
rewriting it to achieve those goals. Get other students to read it and comment on
it. Remember you are not being marked on how good the �nal model is, you are
being marked on how you went about it and how you reported what you did. You
will be penalised if you have not taken account of advice in these notes. Keep a
copy of your project, we will not return it. Try and enjoy the process, it can be
fun discovering new things.
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4. Notes, The Linear Regression Model, LRM

4.1. Notation

Econometrics is mainly about estimating linear regression models. The bivariate
regression model is of the form:

yt = �1 + �2xt + ut

for t = 1; 2; :::; T: This is a set of T equations which explain observations on a
dependent variable, yt; by an independent variable xt (which may be a non-linear
function of some other variable) and errors, are ut = yt��1��2xt: Least squares
chooses �i to minimise

P
u2t : Multiple regression, with k explanatory variables

takes the form
yt = �1 + �2x2t + :::+ �kxkt + ut

where x1t = 1 all t: This can be written in vector form as:

yt = �
0xt + ut

where � and xt are k � 1 vectors. Or in matrix form as

y = X� + u

where y is a T � 1 vector and X is a T � k matrix. For the bivariate regression,
this is 2664

y1
y2
::
yT

3775 =
2664
1 x1
1 x2
:: ::
1 xT

3775� �1�2
�
+

2664
u1
u2
::
uT

3775
with

(X 0X) =

�
T

P
xtP

xt
P
x2t

�
(X 0X)

�1
=

1

T
P
x2t � (

P
xt)

2

� P
x2t �

P
xt

�
P
xt T

�
The sum of squared residuals u0u =

PT
t=1 u

2
t is

u0u = (y �X�)0(y �X�)
= y0y + �0X 0X� � 2�0X 0y
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If A is a n �m matrix, and B is an m � k matrix the transpose of the product
(AB)0 is B0A0 the product of a k �m matrix with a m � n matrix, A0B0 is not
conformable. y0X� = �0X 0y because both are scalars (1 � 1 matrices). Scalars
are always equal to their transpose. The term �0X 0X� is a quadratic form, i.e.
of the form x0Ax: Quadratic forms play a big role in econometrics. Matrix, A;
is positive de�nite if for any a; a0Aa > 0: Matrices with the structure X 0X are
always positive de�nite, since they can be written as a sum of squares. De�ne
z = Xa; then z0z = a0X 0Xa is the sum of the squared elements of z.
Writing u0u =

PT
t=1 u

2
t out explicitly we get the three termsX

y2t + [�
2
1T + �

2
2

X
x2t + 2�1�2

X
xt]� 2(�1

X
yt + �2

X
xtyt) (4.1)

you can see that the middle term �0X 0X� in [::] is a quadratic.

4.1.1. Di¤erentiation with vectors and matrices

To minimise u0u; which is a function of the k elements �; we will need to take
derivatives, getting k derivatives with respect to each element of �. Consider the
equation:

P = x
1xn

0 a
nx1

Then the derivatives of P with respect to x and x0 are de�ned as :

dP

dx
= a and

dP

dx0
= a0

For n = 2:

P = [x1; x2]

�
a1
a2

�
= x1a1 + x2a2

Then
dP

dx1
= a1 and

dP

dx2
= a2

So
dP

dx
=

� dP
dx1
dP
dx2

�
=

�
a1
a2

�
= a

and
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dP

dx0
=

�
dP

dx1
;
dP

dx2

�
= [a1; a2] = a

0

Consider the quadratic form:

Q = x
1xn

0 A
nxn
x
nx1

Then the derivative of Q with respect to x or x0 is de�ned as :

dQ

dx
= 2Ax and

dQ

dx0
= 2x0A

For n = 2, assuming A is symmetric for simplicity,:

Q = [x1; x2]

�
a11 a12
a12 a22

� �
x1
x2

�

Q = [x1; x2]

�
a11x1 + a12x2
a12x1 + a22x2

�
= a11x

2
1 + 2a12x1x2 + a22x

2
2

So:
dQ

dx1
= 2a11x1 + 2a12x2 and

dQ

dx2
= 2a12x1 + 2a22x2

Then

dQ

dx
=

"
dQ
dx1
dQ
dx2

#
=

�
2a11x1 + 2a12x2
2a12x1 + 2a22x2

�
= 2

�
a11 a12
a12 a22

� �
x1
x2

�
= 2A

2x2
x
2x1

and

dQ

dx0
=

�
dQ

dx1
;
dQ

dx2

�
= [2a11x1 + 2a12x2; 2a12x1 + 2a22x2]

= 2 [x1; x2]

�
a11 a12
a12 a22

�
= 2 x

1x2

0A
2x2
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4.1.2. Least Squares in the LRM

Consider the linear regression model

y
T x1
= X

T xk
�
kx1
+ u
T x1

The problem is to minimize the sum of squared residuals with respect to �

u0u = (y �X�)0 (y �X�)
= (y0 � �0X 0) (y �X�)
= y0y � �0X 0y � y0X� + �0X 0X�:

Since these are all scalars, the second and third terms are equal and we can
write

u0u = y0y � 2�0X 0y + �0X 0X�

The second term is:
P = 2 �

1xk

0(X 0y)
kx1

From above we know that if P = x0a, dP
dx
= a so

dP

d�
= 2X 0y

The third term is a quadratic form

Q = �
1xk

0(X 0X)
kxk

�
kx1

From above we know that if Q = x0Ax, dQ
dx
= 2Ax so:

dQ

d�
= 2X 0X�

And the �rst order condition (FOC) is

0 = �2X 0y + 2X 0Xb�
so b� = (X 0X)

�1
X 0y
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To �nd the least squares estimates, we cancel the 2s and solve for b�; the least
squares estimator that makes the FOC equal zero. This requires that X 0X is non-
singular, so an inverse exists. The second derivative is 2X 0X which is a positive
de�nite matrix, so this is a minimum.
In the bivariate model to minimise u0u we have to di¤erentiate the sum of

squred residuals, (4.1) above, twice, with respect to �1 and �2; to get the 2 � 1
vector of derivatives and set them equal to zero. The two elements of the vector
are

@u0u

@�1
= 2b�1T + 2b�2X xt � 2

X
yt = 0 (4.2)

@u0u

@�2
= 2b�2X x2t + 2

b�1X xt � 2
X

xtyt = 0 (4.3)

Check that this corresponds to the matrix formula. We can also write these as

�2
X
(yt � [b�1 + b�2xt]) = �2

Xbut = 0
�2
X

xt(yt � [b�1 + b�2xt]) = �2
X

xtbut = 0
The least squares estimates make the residuals (estimates of the errors) uncorre-
lated with the regressors. Our least squares estimate of � is denoted b� and is a
2� 1 vector.

(X 0X)
�1
X 0y =

1

T
P
x2t � (

P
xt)

2

� P
x2t �

P
xt

�
P
xt T

� � P
ytP
xtyt

�
b�1 = P

x2t
P
yt �

P
xt
P
xtyt

T
P
x2t � (

P
xt)

2

b�2 = �
P
xt
P
yt + T

P
xtyt

T
P
x2t � (

P
xt)

2

These can be expressed in more intuitive form. From the �rst equation (4:2)

b�1 =

P
yt
T

� b�2Pxt
T

= y � �2x

substituting for b�1 in the second equation (4:3) can be writtenb�2X x2t + (y � b�2x)X xt �
X

xtyt = 0b�2X xt(xt � x)�
X

xt(yt � y) = 0
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b�2 = P
xt(yt � y)P
xt(xt � x)

=

P
(xt � x)(yt � y)P
(xt � x)2

Dividing top and bottom by T, this is the ratio of the estimated covariance of xt
and yt to the estimated variance of xt:
Note thatX
(xt � x)(yt � y) =

X
xtyt + Tyx�

X
xty �

X
ytx

=
X

xtyt + T

P
xt
T

P
yt
T

�
X

xt

P
yt
T

�
X

yt

P
xt
T

=
X

xt(yt � y)

4.2. Statistical properties of the LRM.

Least squares is a purely arithmetic procedure, to establish its statistical properties
we need to make some statistical assumptions. Suppose we have a sample of data
of observations on random variables yt a scalar and xt a k � 1 vector. The joint
distribution of the random variables, yt; xt; can be written as the product of the
distribution of yt conditional on xt and the marginal distribution of xt :

Dj(yt; xt; �j) = Dc(yt j xt; �c)Dm(xt; �m) (4.4)

�j is a vector of parameters of the joint distribution, �c of the conditional distri-
bution, �m of the marginal. The distribution that we will be interested in is the
distribution of yt conditional on xt and the parameters that we will be interested
in are the parameters of the conditional distribution �c which we will usually de-
note by �: We will assume that the x is exogenous, which means that there is
no information in the marginal distribution for x about the parameters of the
conditional distribution that we are interested in. Usually we are only interested
in the �rst two moments of the distribution, the conditional expectation (the re-
gression function) and the conditional variance. If yt and xt are jointly Normally
distributed, say: �

yt
xt

�
� N

�
�y
�x
;

�
�2y �yx
�xy �xx

��
then the conditional expectation of yt is a linear function of xt :

E(yt j xt) = �y +
�
�yx�

�1
xx

�
(xt � �x)
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We can decompose yt into two components, the systematic part given by the
conditional expectation and the unsystematic part, the error. The error is:

ut = yt � E(yt j xt) = yt � �0xt
so:

yt = �
0xt + ut; t = 1; 2; :::; T: (4.5)

If the random variables are jointly normally distributed and the observations are
independent, the conditional variance is a constant:

E(yt � E(yt j xt))2 = E(u2t ) = �2 = �2y � �yx��1xx�xy: (4.6)

The parameters of the conditional distribution which we will want to estimate are
�c = � = (�; �

2):
In matrix form the T � T conditional variance covariance matrix of y is:

E(y � E(y j X))(y � E(y j X))0 = E(uu0) = �2IT :

This is a T � T matrix with �2 on the diagonal and zeros on the o¤-diagonals.
Distinguish uu0 a T � T matrix and u0u the scalar sum of squared errors.
If the joint distribution of yt and xt is normal, the conditional distribution is

also normal, and if the sample is independent we can write the distribution for an
observation:

Dc(yt j xt; �) � IN(�0xt; �2)

= (2��2)�1=2 exp

�
�1
2
(
yt � �0xt

�
)2
�

or in matrix form:

Dc(y j X; �) � N(X�; �2I) (4.7)

= (2��2)�T=2 exp

�
� 1

2�2
(y �X�)0(y �X�)

�
: (4.8)

Notice that we do not need to specify conditional independence in the matrix form,
the fact that the variance covariance matrix is �2I implies that the conditional
covariances between yt and yt�i are zero.
We need to make some assumptions about X: First it should be of full rank

k, there should be no exact linear dependences between the columns of X; the
various right hand side variables. This is required for (X 0X)�1 to exist. Secondly,
the right hand side variables should be exogenous, roughly independent of the
errors. Exogeneity is discussed in more detail below in the notes for week 9.
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4.3. Maximum Likelihood estimation

4.3.1. Introduction

Suppose we have a random variable y with a known probability density function
f(y; �), where � is a vector of parameters (e.g. mean (expected value) and vari-
ance). We can use this formula to tell us the probability of particular values of
y, given known parameters. For instance, given that a coin has a probability of
getting a head of p = 0:5, what is the probability of observing 10 heads in a row?
Answer (0:5)10: Alternatively, we can use the same formula to tell us the likelihood
of particular values of the parameters, given that we have observed a sample of
realisations of y; say y1; y2; ::; yT : Given that we observe ten heads in a row, how
likely is it that this sample would be generated by an unbiased coin (i.e p = 0:5)?
Again the answer is (0:5)10. In the �rst case we interpret f(y; �) as a function of
y given �. In the second case we interpret f(y; �) as a function of � given y: The
maximum likelihood (ML) procedure estimates b� as the value most likely to have
generated the observed sample. In the coin example, p = 0:5 is very unlikely to
have generated the observed sample of 10 heads. If the sample is random, the
observations are independent and we can just multiply the probabilities for each
observation together as we did in the coin example and write the Likelihood as:

L(�) = f(y1; �)f(y2; �):::f(yT ; �)

We then choose � that maximises this value for our observed sample y1; y2; :::; yT :
It is more convenient to work with the logarithm of the likelihood function. Since
logs are a monotonic function the value of � that maximises the log-likelihood will
also maximise the likelihood. Thus the log-likelihood is:

LL(�) =

TX
t=1

log f(yt; �):

To �nd the maximum we take the derivatives of LL(�); and set them to zero:

S(b�) = @LL(b�)
@�

=
@
P
log f(yt;b�)
@�

= 0

then solve for the value of �;b� that makes the derivatives equal to zero. Notice
that LL(�) is a scalar function of �, and if � is a k � 1 vector, @LL(�)

@�
will be

a k � 1 vector of derivatives. S(b�) is often called the Score vector. For simple
71



examples, like the LRM below we can solve these equations analytically, for more
complicated examples we solve them numerically. To check that we have found
a maximum, we need to check the second order conditions and calculate the kxk
matrix of second derivatives:

@2LL(�)

@� @�0
;

evaluated at the true �: For a maximum this matrix should be negative de�nite.
The information in observation t is the negative of the expected value of the matrix
of second derivatives:

It(�) = �E(
@2LLt(�)

@� @�0
)

which is a symmetric k�k matrix. The average information matrix in the sample
of size T is:

IT (�) =
1

T

TX
t=1

It(�) = �E(
1

T

@2LL(�)

@� @�0
):

A useful result is that for any unbiased estimator (in small samples) or consistent
estimator (asymptotically when T ! 1) the inverse of the information matrix
provides a lower bound (the Cramer-Rao lower bound) on the variance covariance
matrix of the estimator

V (b�) � I(b�)�1:
4.3.2. General properties of ML estimators

Under certain conditions (which usually hold in economic examples) the ML esti-
mator b� is consistent, that is for some small number � > 0

lim
T !1 Pr(j b�T � � j> �) = 0:

The ML estimator is asymptotically normally distributed and asymptotically
attains the Cramer-Rao lower bound (i.e. it is e¢ cient), it is asymptotically
N(�; I(�)�1): I(b�)�1 is often used to provide estimates of the asymptotic variance
covariance matrix of the ML estimator. When we evaluate asymptotic distribu-
tions we look at

p
T (b���) as T !1, because since it is consistent the distribution

of b� collapses to a point and scale the information matrix by T .
(
p
T )�1S(�) is also asymptotically normal N(0; I(�)): We will use these two

asymptotic normality properties in testing. In addition, E(S(�)S(�)0) = T � I(�):
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ML estimators are also invariant in that for any function of �, say g(�), the ML
estimator of g(�) is g(b�). Partly because of this ML estimators are not necessarily
unbiased. Some are, many are not.

4.3.3. ML estimation of the LRM

For the LRM, the likelihood of the sample is given by (4.7) above, but now inter-
preted as a function of � = (�; �2), the unknown parameters:

L(�; �2) = (2��2)�T=2 exp

�
� 1

2�2
(y �X�)0(y �X�)

�
:

The Log-likelihood function is :

LL(�; �2) = �T
2
log(2�)� T

2
log(�2)� 1

2�2
(y �X�)0(y �X�):

and to �nd the estimates that maximise this we di¤erentiate it with respect to �
and �2 and set the derivatives equal zero. Notice that

u0u = (y �X�)0(y �X�) = y0y + �0X 0X� � 2�0X 0y:

When we transpose we reverse the order to maintain the correct dimensions and
�0X 0y = y0X� because both are scalars. Thus:

@LL(�; �2)

@�
= � 1

2�2
(2X 0X� � 2X 0y) (4.9)

and
@LL(�; �2)

@�2
= � T

2�2
+

1

2�4
u0u: (4.10)

The derivative with respect to �2 of log(�2) is 1=�2 and of �1=2�2 = �(2�2)�1 is
(�1)(�(2�2)�2).
Setting (4.9) equal to zero gives one First Order Conditions, FOC

� 1

2b�2 (2X 0Xb� � 2X 0y) = 0

1b�2 (X 0y �X 0Xb�) = 0
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where the hats denote that these are the values of � and �2 that make the FOCs
equal to zero. Notice that this can be written

1b�2X 0(y �Xb�) = 1b�2X 0bu = 0 (4.11)

the �rst order conditions choose � that makes the estimated residuals, bu = y�Xb�;
uncorrelated with (orthogonal to) the explanatory variables. This estimate is

b� = (X 0X)�1X 0y:

Notice that we need X to be of full rank for the inverse of (X 0X) to exist. If
(X 0X) is singular, b� is not de�ned. This is called exact multicollinearity.
Setting (4.10) equal to zero gives

� T

2b�2 + 1

2b�4 bu0bu = 0
multiply through by 2b�4

�Tb�2 + bu0bu = 0
so our maximum likelihood estimator of the variance is:

b�2 = bu0bu
T
:

The ML estimator is biased and we usually use the unbiased estimator s2 =bu0bu=(T � k):
To check second order conditions and construct the information matrix we

take derivates of (4.9) and (4.10)

@2LL(�; �2)

@� @�0
= � 1

�2
X 0X (4.12)

@LL(�; �2)

@�@�2
= � 1

�4
X 0u: (4.13)

Notice the derivative of (�2)�1X 0u is �(�2)�2X 0u: Finally

@2LL(�; �2)

@(�2)2
=

T

2�4
� u

0u

�6
: (4.14)
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To get the information matrix we take the negative of the expected value of the
second derivative matrix. Notice that E(X 0u) = 0; E(u0u) = T�2 so the expected
value of the �nal second derivative can be written:

T

2�4
� T�

2

�6
=

T

2�4
� T

�4
= � T

2�4

I(�) = �E(@
2LL(�)

@� @�0
) =

�
1
�2
X 0X 0
0 T

2�4

�
I(�; �2)�1 =

�
�2(X 0X)�1 0

0 2�4

T

�
:

This gives the lower bound for the Variance-covariance matrix for estimators of
�; �2: Notice that the estimators of � and �2 are independent, their covariances
are zero. But there will be non-zero covariances between the elements of b�:
We can put the ML estimates into the Log-likelihood function, to get the

Maximised Log-Likelihood, MLL, reported by most programs

MLL = �T
2
log(2�)� T

2
log(b�2)� 1

2b�2 bu0bu
= �T

2
log(2�)� T

2
log(b�2)� Tb�2

2b�2
= �T

2
(log(2�) + 1)� T

2
log(b�2)

apart from the constant this is just the negative of half the sample size times the
log of the ML estimate of the variance. This can be negative or positive.

4.3.4. Properties of the ML estimators in the LRM

General asymptotic properties of ML estimators were discussed above, to derive
the speci�c small sample properties of the LRM estimators we will use two results
repeatedly.
Firstly, linear functions of normally distributed variables are normally distrib-

uted. If y is IN(�; �2) then a + by is N(a + b�; b2�2): The multivariate generali-
sation of this is that if the T � 1 vector Y � N(M;�), where M is T � 1; � is a
T � T variance covariance matrix. Then for given A and B of order K � 1 and
K � T :

A+BY � N(A+BM;B�B0): (4.15)
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Secondly, quadratic forms (sums of squares) of standardised normally distrib-
uted variables are Chi-squared. So

TX
t=1

�
yi � �
�

�2
� �2(T )

and for the T � 1 vector Y � N(M;�), then:

(Y �M)0��1(Y �M) � �2(T ) (4.16)

distributed as Chi-squared with T degrees of freedom.

Regression Coe¢ cients To return to the LRM, where y is a T � 1 vector and
X is a T � k full rank matrix of exogenous variables, then conditional on X; since

y � N(X�; �2I)

and the ML estimator is b� = (X 0X)�1X 0y

a linear function of y; b� is normally distributed using (4.15):b� � Nf(X 0X)�1X 0X�; (X 0X)�1X 0(�2I)X(X 0X)�1g
� Nf�; �2(X 0X)�1g

This indicates (1) b� is unbiased, E(b�) = �; (2) it is fully e¢ cient, its variance co-
variance matrix attains the lower bound obtained above �2(X 0X)�1:We generally
estimate the variance covariance matrix by s2(X 0X)�1, where s2 = bu0bu=(T � k),
the unbiased estimator. The square roots of the diagonal elements of this ma-
trix give the standard errors of the individual regression coe¢ cients, e.g. �i and
the o¤ diagonal elements give the covariances between regression coe¢ cients, e.g.
Cov(�i; �j):

Residuals The estimated residuals are uncorrelated with the explanatory vari-
ables by construction:
X 0bu = X 0(y �Xb�) = X 0(y �X(X 0X)�1X 0y) = X 0y �X 0y = 0.
X 0bu is a set of k equations of the form:

TX
t=1

but = 0; TX
t=1

x2tbut = 0; :::; TX
t=1

xktbut = 0:
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In addition:bu = y �Xb� = y �X(X 0X)�1X 0y = (I �X(X 0X)�1X 0)y = (I � Px)y =My:
Px is a �projection matrix�it is symmetric and idempotent (PxPx = Px) and

orthogonal to M; (PxM = 0); which is also symmetric and idempotent. So

y = Pxy +My

it is split into two orthogonal components, the projection of y on X and the
orthogonal remainder.
Notice that the estimated residuals are a transformation of the true distur-

bances: bu = (I �X(X 0X)�1X 0)y = (I �X(X 0X)�1X 0)(X� + u)

= (I �X(X 0X)�1X 0)u =Mu:

We cannot recover the true disturbances from this equation since M is singular,
rank T-k. The sum of squared residuals is:

TX
t=1

bu2t = bu0bu = u0M 0Mu = u0Mu:

To calculate the expected value of the sum of squared residuals (strictly conditional
on X which has not been made explicit), note that bu0bu is a scalar, thus equal to
its trace, the sum of its diagonal elements. Thus using the properties of traces we
can write

E(bu0bu) = E(u0Mu) = E(tr(u0Mu)) = E(tr(Muu0))

= tr(M�2I) = �2tr(M) = �2(T � k):
Thus the unbiased estimate of �2 is s2 = bu0bu=(T � k): The last step uses the fact
that the Trace of M is

tr
�
IT �X(X 0X)�1X 0� = tr(IT )� tr

�
X(X 0X)�1X 0�

= tr(IT )� tr
�
(X 0X)�1X 0X

�
= tr(IT )� tr(IK) = T � k

The sum of squared standardised original disturbances u0u=�2 are distributed as
�2(T ), but the sum of squared standardised residuals bu0bu=�2 = u0Mu=�2 are
�2(rankM) = �2(T � k): Alternatively

(T � k)( s
2

�2
) � �2(T � k):
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4.4. What happens when assumptions fail.

(a) If X is not of full rank k, because there is an exact linear dependency between
some of the variables, the OLS/ML estimates of � are not de�ned and there is
said to be exact multicollinearity. The model should be respeci�ed to remove the
exact dependency. When there is high, though not perfect, correlation between
some of the variables there is said to be multicollinearity. This does not involve a
failure of any assumption.
(b) If the X are not strictly exogenous the estimates of � are biased, though

if the X are predetermined (e.g. lagged dependent variables) and the disturbance
term is not serially correlated, they will remain consistent. Otherwise, they will
be inconsistent. In certain circumstances failure of the exogeneity assumptions
can be dealt with by the method of Instrumental Variables discussed below.
(c). If normality does not hold and the form of the distribution is not known

the Least Squares estimator, b� = (X 0X)�1X 0y, is no longer the Maximum Likeli-
hood estimator and is not fully e¢ cient, but it is the minimum variance estimator
in the class of linear unbiased estimators (biased or non-linear estimators may
have smaller variances). In small samples, the tests below will not have the stated
distributions, though asymptotically they will be normal. If the form of the dis-
tribution is known (e.g. a t distribution) maximum likelihood estimators can be
derived for that particular distribution and they will be di¤erent from the OLS
estimators. EViews and Micro�t will estimate model with errors distributed as t,
under the GARCH options. For small degrees of freedom, the t has fatter tails,
when the degrees of freedom are aound 30 it is close to normal.
(d) If y � N(X�; �2
); that is its variance covariance matrix is not �2I;

there are two possible problems: the variances (diagonal terms of the matrix) are
not constant and equal to �2 (heteroskedasticity) and/or the o¤ diagonal terms,
the covariances, are not equal to zero (failure of independence, serial correla-
tion, autocorrelation). Under these circumstances, b� remains unbiased but is not
minimum variance (e¢ cient). Its variance-covariance matrix is not �2(X 0X)�1;
but �2(X 0X)�1X 0
X(X 0X)�1: Corrected variance-covariance matrices are avail-
able in most packages (White Heteroskedasticity consistent covariance matrices or
Newey-West autocorrelation consistent ones). These use estimates ofX 0
X in the
formula. Use Options on the equation menu in EViews to get HAC (Heteroskedas-
ticy and Autorcorrelation Consistent) standard errors. Notice that residual serial
correlation or heteroskedasticity may indicate not that there is some covariances
between the true disturbances but that the model is wrongly speci�ed, e.g. vari-
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ables are omitted, see below. When it is appropriate to model the disturbance
structure in terms of 
; Generalised Least Squares, discussed below, can be used.
Often residual serial correlation or heteroskedasticity should lead you to respecify
the model rather than to use Generalised Least Squares.
(e) Omitted variables. Suppose the data are generated by

yt = �
0xt + 


0zt + ut (4.17)

and you omit zt; an hx1 vector and estimate

yt = �
0xt + vt: (4.18)

What is the relationship between the estimates? Suppose we describe the relation
between the omitted and included right hand side variables by the multivariate
regression model:

zt = Bxt + wt (4.19)

where B is an hxk matrix. This is just a set of h regressions in which each zt is
regressed on all k xt: If you replace zt in (4.17) by the right hand side of (4.19)
you get:

yt = �
0xt + 


0(Bxt + wt) + ut

yt = (�
0 + 
0B)xt + (


0wt + ut):

Thus � = (�0 + 
0B) and vt = (
0wt + ut): The coe¢ cient of xt in (4.18) will
only be an unbiased estimator of �, the coe¢ cient of xt in (4.17) if either 
 = 0
(zt really has no e¤ect on yt) or B = 0, (there is no correlation between the
included and omitted variables). Notice that vt also contains the part of zt that
is not correlated with xt, wt; and there is no reason to expect wt to be serially
uncorrelated or homoskedastic. Thus misspeci�cation, omission of zt, may cause
the estimated residuals to show these problems.

4.4.1. Generalised Least Squares

If y � N(X�; �2
) its distribution is given by:

2��T=2 j �2
 j�1=2 exp
�
�1
2
(y �X�)0(�2
)�1(y �X�)

�
:

Notice that when 
 = I, then the term in the determinant, j �2
 j�1=2 is just
(�2)�T=2:
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If 
 is a known matrix the Maximum Likelihood Estimator is the Generalised
Least Squares estimator �GLS = (X 0
�1X)�1X 0
�1y; with variance-covariance
matrix V (�GLS) = �2(X 0
�1X)�1:Whereas the OLS estimator chooses � to make
(�2)�1X 0bu = 0, the GLS estimator chooses � to make (�2)�1X 0
�1eu = 0, whereeu = y � X�GLS. In practice GLS is implemented by �nding a �transformation
matrix�P such that P 0P = 
�1 and P
P 0 = I. This can always be done since

 must be a positive-de�nite symmetric matrix. You then transform the data by
premultiplying the equation by P

Py = PX� + Pu

y� = X�� + u�

where y� = Py, etc. OLS is then applied to the transformed data, which is fully
e¢ cient since

E(u�u�0) = E(Puu0P 0) = PE(uu0)P 0 = P (�2
)P 0 = �2P
P 0 = �2I:

In practice, 
 is rarely known completely, but it may be known up to a few
unknown parameters. These can be estimated and used to form an estimate of 
;
and P: This is known as the Feasible or Estimated GLS estimator. It generally
di¤ers from the exact ML estimator. The text books give large number of examples
of FGLS estimators, di¤ering in the assumed structure of 
: But in many cases
it is better to respecify the model or correct the standard errors than to apply
FGLS to try and �x problems with the residuals.

5. Testing

5.1. Introduction

Suppose that we have prior information on �, which suggests that elements of the
parameter vector take speci�ed values, such as zero or one or are linked by other
restrictions, and we wish to test this hypothesis. A test involves:
(a) a null hypothesis usually called H0; e.g. for a scalar parameter: H0 : � = 1;
(b) an alternative hypothesis, e.g. H1 : � 6= 1, this is a two sided alternative,

a one sided alternative would be � < 1;
(c) a test statistic, which does not depend on the true value of the parameters

(is pivotal), (e.g. (b� � 1)=SE(b�), where SE(b�) is the estimated standard error
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of b�) with a known distribution when the null hypothesis is true (e.g. a central t
distribution);
(d) a speci�ed size �, the chosen probability of Type I error (rejecting H0 when

it is true) usually 0.05;
(e) critical values so that if the null hypothesis is true the probability of lying

outside the critical values is �;
(f) a power function which gives the probability of rejecting the null as a

function of the true (unknown) value of �: The power of a test is the probability
of rejecting H0 when it is false (one minus the probability of type two error).
The procedure is: to not reject H0 if the test statistic lies within the critical

values and to reject H0 if the test statistic lies outside the critical values. Notice
that rejecting the null does not mean accepting the alternative. The results can
also be presented as p values, which can be thought of as giving the probability
that the hypothesis is true. If the p value is small, less than the chosen size
(probability of rejecting null when true), e.g. 0.05, then the null hypothesis is
rejected.
The test asks whether the di¤erence of the estimate from the null hypoth-

esis could have arisen by chance, it does not tell you whether the di¤erence is
important, therefore you should distinguish substantive (economic) importance
from statistical signi�cance. A coe¢ cient may be statistically signi�cant because
it is very precisely estimated but so small as to be of no economic importance.
Conversely the coe¢ cient may be large in economic terms but have large standard
errors so not be statistically signi�cant. It is also useful to think of a test as in-
forming a decision, accepting or rejecting the null and considering the costs of the
two sorts of mistakes. The costs can be embodied in some form of loss function
or utility function.

5.2. Exact Tests

In the LRM with linear restrictions we can derive exact small sample tests. Sup-
pose, our null hypothesis is a set of m linear restrictions of the form R� = q or
R� � q = 0; where R and q are known and of order m � k and m � 1 respec-
tively. The unrestricted model has k parameters, the restricted model k-m, each
restriction reduces the number of parameters we estimate. In the case where m=k,
all the parameters are speci�ed, R is an identity matrix and the restrictions are
� = q:
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Since b� � N(�; �2(X 0X)�1)

and the restrictions are linear

(Rb� � q) � N(R� � q; �2R(X 0X)�1R0)

Under H0 : R� � q = 0

(Rb� � q) � N(0; �2R(X 0X)�1R0)

and
(Rb� � q)0[�2R(X 0X)�1R0]�1(Rb� � q) � �2(m):

Notice that this is a special case of the Wald test statistic below and is of the
same form. This is not yet a test statistic because it depends on the unknown �2;
but we know (T � k)s2=�2 � �2(T � k) and that for independent Chi-squares:

�2(m)=m

�2(T � k)=T � k � F (m;T � k)

so
(Rb� � q)0[�2R(X 0X)�1R0]�1(Rb� � q)=m

[(T � k)s2=�2]=(T � k) � F (m;T � k)

or since the two unknown �2 cancel:

(Rb� � q)0[R(X 0X)�1R0]�1(Rb� � q)=m
s2

� F (m;T � k):

This provides us with a test statistic. In practice it is easier to calculate it from
another way of writing this formula. De�ne the unrestricted and restricted esti-
mated equations as

y = Xb� + bu; and y = X�� + u�

then
(u�0u� � bu0bu)=mbu0bu=(T � k) � F (m;T � k);

the ratio of (a) the di¤erence between the restricted and unrestricted sum of
squared residuals divided by the number of restrictions to (b) the unbiased esti-
mate of the unrestricted variance. Computer programs automatically print out
a test for the hypothesis that all the slope coe¢ cients in a linear regression are
zero, this is F (k � 1; T � k).
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5.3. Asymptotic Tests

Often we cannot derive exact, small sample tests and use aymptotic approxima-
tions. We saw above that the ML estimates are those which maximise LL(�), i.e.
the b�; which make

@LL(�)

@�
= S(b�) = 0

where S(b�) is the score vector, the derivatives of the LL with respect to each of
the k elements of the vector � evaluated at the values, b�; which make S(�) = 0:
We will call these the unrestricted estimates and the value of the Log-likelihood
at b�, LL(b�).
Suppose theory suggests m � k prior restrictions (possibly non-linear) of the

form R(�) = 0; where R(�) is an m � 1 vector: If m = k, theory speci�es all the
parameters and there are none to estimate. The restricted estimates maximises

$ = LL(�)� �0R(�)

where � is am�1 vector of Lagrange Multipliers. The �rst order condition, FOC,
is

@$

@�
=
@LL(�)

@�
� @R(�)

@�
� = 0

Write the kx1 vector @LL(�)=@� as S(�) and the k�m matrix @R(�)=@� as F (�)
then at the restricted estimate ��; which makes the FOC hold

S(��)� F (��)�� = 0

Notice that at �� the derivative of the Log-likelihood function with respect to the
parameters is not equal to zero but to F (��)��: The value of the Log-likelihood
at �� is LL(��) which is less than or equal to LL(b�):
If the hypotheses (restrictions) are true:
(a) the two log-likelihoods should be similar, i.e. LL(b�) � LL(��) should be

close to zero;
(b) the unrestricted estimates should satisfy the restrictions R(b�) should be

close to zero (note R(��) is exactly zero by construction);
(c) the restricted score, S(��), should be close to zero (note S(b�) is exactly

zero by construction) or equivalently the Lagrange Multipliers �� should be close
to zero, the restrictions should not be binding.
These implications are used as the basis for three types of test procedures.

The issue is how to judge �close to zero�? To judge this we use the asymptotic
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equivalents of the linear distributional results used above in the discussion of the
properties of the LRM. Asymptotically the ML estimator is normal

b� ea N(�; I(�)�1)
asymptotically the scalar quadratic form is chi-squared

(b� � �)0I(�)(b� � �) ea �2(k):
and asymptotically R(b�) is also normal

R(b�) ea N(R(�); F (�)0I(�)�1F (�))

where F (�) = @R(�)=@�: This gives us three procedures for generating asymptotic
test statistics for the m restictionsH0 : R(�) = 0; each of which are asymptotically
distributed �2(m), when the null hypothesis is true:
(a) Likelihood Ratio Tests

LR = 2(LL(b�)� LL(��)) � �2(m)
(b) Wald Tests

W = R(b�)0[F (�)0I(�)�1F (�)]�1R(b�) � �2(m)
where the term in [:::] is an estimate of the variance of R(b�) and F (�) = @R(�)=@�:
(c) Lagrange Multiplier (or E¢ cient Score) Tests where @LL(�)=@� = S(�)

LM = S(��)0I(��)�1S(��) � �2(m):

The Likelihood ratio test is straightforward to calculate when both the restricted
and unrestricted models have been estimated. The Wald test only requires the
unrestricted estimates. The Lagrange Multiplier test only requires the restricted
estimates. For the LRM, the inequality W>LR>LM holds, so you are more likely
to reject using W. In the LRM, the LM test is usually calculated using regression
residuals as is discussed below. The Wald test is not invariant to how you write
non-linear restrictions. Suppose m = 1, and R(�) is �1�2 � �3 = 0. This could
also be written �1 � �3=�2 = 0 and these would give di¤erent values of the test
statistic. The former form, using multiplication rather than division, is usually
better.
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5.4. Model Selection Procedures

Hypothesis tests require the two models being compared to be �nested�: one model
(the restricted model) must be a special case of the other (the unrestricted or
maintained model). In many cases we want to compare �non-nested�models, e.g.

M1 : yt = a1 + b1xt + u1t

M2 : yt = a2 + c2zt + u2t

where xt and zt are di¤erent scalar variables. There are no restrictions onM1 that
will give M2 and vice-versa. We could nest them both in a general model:

M3 : yt = a3 + b3xt + c3zt + u3t:

The restriction c3 = 0 gives M1; so rejecting the restriction c3 = 0 rejects M1

The restriction b3 = 0 gives M2; so rejecting the restriction b3 = 0 rejects M2:
This gives four possible outcomes:

1. Reject M1, do not reject M2 : c3 6= 0; b3 = 0;

2. Reject M2, do not reject M1 : b3 6= 0; c3 = 0;

3. Reject both; b3 6= 0; c3 6= 0;

4. Do not reject either: b3 = 0; c3 = 0:

There are a range of other non-nested tests available (Micro�t has a large
selection) but they all give rise to the same four possibilities. If xt and zt are
highly correlated case 4 is quite likely. Notice that these are based on individual
tests (t tests), joint tests may give con�icting answers. On individual tests we
could reject both the hpothesis b3 = 0; and c3 = 0, i.e. both have signi�cant t
ratios, but we could not reject the joint hypothesis that they are both equal to
zero. Conversely, they could be individually insigni�cant but jointly signi�cant.
An alternative approach is not to test but to choose the �best�model on some

�model selection�criterion. As with British newspapers, the most popular are the
worst. The most popular are R2 and R

2
. Treat them with the scepticism you

would give to a story in the Sun.
Better criteria for choosing between various models are the Akaike Information

Criterion (AICi = MLLi � ki); and the Schwarz Bayesian Information Criterion
or Posterior Odds Criterion (SBC = MLLi � 0:5ki log T ); where MLLi is the
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maximised log likelihood of model i, ki is the number of parameters estimated in
model i, and T is the sample size. You choose the model with the largest value.
The SBC tends to choose a more parsimonious model (fewer parameters).
About half of statistics programs (including Micro�t) de�ne the AIC in terms

of the MLL, in which case you choose the model with the largest value. The other
half (including EViews) de�ne it equivalently in terms of the sum of squared
residuals, in which case you choose the model with the smallest value. Be careful,
which way they are de�ned.

6. Diagnostic Tests

The estimates one gets of a model are only valid if a number of assumptions hold
and it is important to test those assumptions. Such tests are called diagnostic or
misspeci�cation tests. Failure on a particular diagnostic test (rejection of the null
that the model is well speci�ed) only indicates that the model is sick, it does not
tell you what the illness is. For instance, if you have chosen the wrong functional
form you may fail tests for serial correlation. Apart from the structural stability
tests most of these tests are Lagrange Multiplier tests which involve auxilliary
regressions using the residuals from the �rst stage regressions. These tests ask
whether the residuals have the properties we would expect if the assumptions
were true. The null hypothesis is always that the assumptions are true, the model
is well speci�ed. Thus if the p value for the test is greater than 0.05, you can
accept the hypothesis that the model is well speci�ed at the 5% level.
There are a very large numbers of these tests for serial correlation and non-

linearity, which use the residuals as the dependent variable; for heteroskedasticity,
which use the squared residuals as the dependent variable; and for normality
which check that the third and fourth moments of the residuals have the values
they should have under normality. For each null, e.g. constant variance (ho-
moskedasticity) there are a large number of di¤erent alternatives (ways that the
variance changes) thus lots of di¤erent tests for heteroskedasticity of di¤erent
forms. Although the justi�cation of these tests is asymptotic, versions which use
F tests and degrees of freedom adjustment seem to work well in practice. In Mi-
cro�t four of these tests are provided automatically in EViews they are available
on the View menu after a regression. See the applied exercise for details. Always
inspect graphs of actual and predicted values and residuals.
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6.1. Structural stability

The assumption that the parameters are constant over the sample is crucial and
there are a variety of tests for constancy. Two are special cases of the F test for
linear restrictions above.
Suppose that we have a sample of data for t = 1; 2; :::; T and we believe

that the relationship may have shifted at period T1 within the sample, and both
sub-samples have more than k observations. The unrestricted model estimates
separate regressions for each sub period t = 1; 2; :::; T1 and for t = T1 + 1; T1 +
2; :::; T ; de�ne T2 = T � T1: X1 a T1 � k matrix, X2 a T2 � k matrix, etc. Then
the models for the two subperiods are:

y1 = X1�1 + u1

y2 = X2�2 + u2

where we assume ui � IN(0; �2); i = 1; 2; the variances are the same in both
periods. The unrestricted residual sum of squares is (bu01bu1 + bu02bu2) with degrees
of freedom T � 2k: The restricted model is

y = X� + u

where X is a T � k matrix. The restricted residual sum of squares is bu0bu with
degrees of freedom T � k: The null hypothesis is that �1 = �2; k restrictions and
the test statistic is

[bu0bu� (bu01bu1 + bu02bu2)]=k
(bu01bu1 + bu02bu2)=(T � 2k) � F (k; T � 2k):

This is known as Chow�s �rst or breakpoint test. He also suggested a second
�predictive failure�or forecast test for the case where there T2 < k though it can
be used whether or not there are enough observations to estimate the second
period model. The test statistic is:

[bu0bu� bu01bu1)]=T2bu01bu1=(T1 � k) � F (T2; T1 � k):

This tests the hypothesis that in�
y1
y2

�
=

�
X1 0
X2 I

� �
�1
�

�
+

�
u1
0

�
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� the T1�1 vector of forecast errors are not signi�cantly di¤erent from zero. This
has a dummy variable for each observation in the second period.
Chow�s �rst test assumes that the variances in the two periods are the same.

This can be tested using the Variance Ratio or �Goldfeld-Quandt�test:

s21
s22
=
bu01bu1=(T1 � k)bu02bu2=(T2 � k) � F (T1 � k; T2 � k):

You should put the larger variance on top so the F statistic is greater than unity.
Notice that although this is an F test, it is not a test of linear restrictions on
the regression parameters like the other F tests we have used. This is a test for
a speci�c form of heteroskedasticity, tests for other types of heteroskedasticity
are given below. If the variances are equal, the two equations can be estimated
together using dummy variables�

y1
y2

�
=

�
X1 0
0 X2

� �
�1
�2

�
+

�
u1
u2

�
this will give the same estimates of the coe¢ cients as running two separate regres-
sions, but di¤erent estimators of the standard errors: this form imposes equality
of variables, the separate regressions do not. For testing di¤erences of individual
coe¢ cients, this can be rewritten�

y1
y2

�
=

�
X1 0
X2 X2

� �
�1

�2 � �1

�
+

�
u1
u2

�
:

Then some can be allowed to di¤er and others kept the same between periods.
Packages like EViews also include a range of other ways to investigate struc-

tural stability of the parameters using recursive residuals such as the CUSUM and
CUSUMSQ diagrams, which are particularly useful when one is uncertain about
the breakpoint. These are presented as graphs of the statistics within two lines.
If the graphs cross the lines it indicates structural instability. They also present
recursive estimates, where the parameters are estimated on the �rst k + 1 obser-
vations, the �rst k + 2 and so on up to T: Breaks may show up in the estimates.
They also give Andrews-Quandt tests which identify the most likely place for a
break. Tests with an unknown break-point will have much less power than tests
with a known break-point.
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6.2. Serial Correlation

Suppose the data were generated by:

yt = �0xt + vt; vt = �vt�1 + ut

yt = �0xt + �vt�1 + ut

where ut is a �well-behaved�disturbance distributed IN(0; �2); but we estimate

yt = b
0xt + vt

the estimated residuals

bvt = yt �bb0xt = �0xt + �vt�1 + ut �bb0xt
bvt = (� �bb)0xt + �vt�1 + ut

we could test the hypothesis that � = 0; there is no serial correlation by running
a regression of the estimated residuals on the regressors and the lagged residuals:

bvt = c0xt + �bvt�1 + ut
and testing � = 0 with a t test. We replace the missing residuals (for period
zero here) by their expected value zero. If we think there may be higher order
correlations, we can add more lagged residuals and test the joint hypothesis that
all the coe¢ cients of the lagged residuals are zero, with an F test. For instance,
if we have quarterly data, we would be interested in testing for up to fourth order
serial correlation, i.e. all �i = 0; i = 1; 2; :::; 4 in:

bvt = c0xt + �1bvt�1 + �2bvt�2 + �3bvt�3 + �4bvt�4 + ut
This is a di¤erent alternative hypothesis to that of no �rst order serial correlation,
but the null hypothesis is the same.

6.3. Non-linearity.

6.3.1. Linear in parameters and not in variables

Suppose we are explaining the logarithm of wages, wi, of a sample of men i =
1; 2; :::; N by age, A, and years of education, E. This is certainly not linear, at
some age wages peak and then fall with age thereafter, similarly with education:
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getting a PhD reduces expected earnings in the UK. In addition, the variables
interact, wages peak later in life for more educated people. This suggests a model
of the form:

wi = a+ bAi + cA
2
i + dEi + eE

2
i + fEiAi + ui

This model is linear in parameters though it is non-linear in the variables and
can be estimated by OLS on the transformed data. We expect, b; d; f > 0 and
c; e < 0: The age at which earnings is maximised is given by the solution to:

@w

@A
= b+ 2cA+ fE = 0

A� = �b+ fE
2c

:

which if the estimated coe¢ cients have the expected signs is positive (since c < 0)
and peak earning age increases with education.

6.3.2. Testing for non-linearity

Here we have strong prior reasons to include squares and cross products. In other
cases we do not, but just want to check whether there is a problem. Adding squares
and cross-products can also use up degrees of freedom very fast. If there are k
regressors, there are k(k+1)/2 squares and cross products, for k=5, 15 additional
regressors. This is �ne in large cross sections with thousands of observations,
but in small samples it is a problem. Instead, we estimate a �rst stage linear
regression:

yt = b�0xt + but (6.1)

with �tted values byt = b�0xt; and run a second stage regression:
but = b0xt + cby2t + vt

and test whether c is sign�cantly di¤erent from zero.
Eviews does this Ramsey RESET test slightly di¤erently. It runs

yt = d
0xt + eby2t + vt

and tests whether e is signi�cantly di¤erent from zero. Noting that

yt = byt + but = b�0xt + but;
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show that they give identi�cal test statistics.
Higher powers of byt can also be added. Notice that by2t is being used as a

measure of squares and cross-products of the xt. For the simple model:

yt = �1 + �2x2t + �3x3t + ut

by2t = (b�1 + b�2x2t + b�3x3t)2
= b�21 + b�22x22t + b�23x23t + 2b�1b�2x2t + :::

Tests which use powers of the �tted values in this way are often known as RESET
tests.

6.3.3. Non-linear in parameters

If our dependent variable is a proportion, pt taking values between zero and one,
the logistic transformation is often used ln(pt=(1� pt): If this is made a function
of time,

ln

�
pt

1� pt

�
= a+ bt+ ut

this gives an S shaped curve for pt over time; which often gives a good description
of the spread of a new good (e.g. the proportion of the population that have
a mobile phone) and can be estimated by least squares, since it is linear in the
parameters. The form of the relationship is

pt =
1

1 + exp�(a+ bt+ ut)

Programs like EViews can handle inherently non-linear problems, so if we
wanted to estimate a logistic with a saturation level so that pt = Nt=K; where
Nt is the number of mobile phone owners and K is the saturation level we could
estimate

Nt =
K

1 + exp�(a+ bt) + "t

directly by non-linear least squares. Notice the assumption about the errors is
di¤erent. In the previous case the error was additive in the logit, here it is additive
in the number. We would enter this in Eviews as

N = C(1)=(1 + exp(C(2) + C(3) �@trend)):

91



@trend in EViews provides a trend. C(1) would be an estimate of K; C(2) of
a and C(3) of b. In practice, unless the market is very close to saturation it is
di¢ cult to estimate K precisely:
For non-linear models, the program uses an interative method to �nd the min-

imum of the sum of squared residuals or the maximum of the likelihood function.
The function may not be well behaved and there may be multiple maxima or
minima. See the applied exercise for an example.

6.4. Heteroskedasticity.

Suppose we estimate the �rst stage linear regression (6.1), then in heteroskedas-
ticity tests we run second stage regressions using the squared residuals:

bu2t = �+ b0zt + vt
the null hypothesis is that the expected value of the squared residuals is a constant
�; so b = 0, and this can be tested with an F test. On the alternative hypothesis,
the variance, squared residuals, change with zt. There are lots of ways that the
variance could change, thus lots of possible candidates for zt: It could be xt; the
regressors; it could be the squares and cross-products of the regressors, often
called the White test; it could be the squared �tted values, the RESET version;
it could be lagged squared residuals, testing for ARCH (autoregessive conditional
heteroskedasticity); etc.

6.5. Normality

If the residuals are normal then their coe¢ cient of skewness (third moment) should
be zero and ceo¢ ecient of kurtosis (fourth moment) three. This is tested by the
Jarque-Bera test

T

(
�23
6�32

+
1

24

�
�4
�22
� 3
�2)

� �2(2)

where �j =
PT

t=1 bujt=T :
7. Univariate Stochastic Processes

Suppose we have a series of observations on some economic variable, yt; t =
1; 2; :::; T , which may already have been transformed, e.g. the logarithm of GDP.
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It is useful to regard each yt as a random variable with a density function, ft(yt)
and we observe one realisation from the distribution for that period. A family
of random variables indexed by time is called a stochastic process, an observed
sample is called a realisation of the stochastic process. A stochastic process is
said to be �strongly stationary� if its distribution is constant through time, i.e.
ft(yt) = f(yt): It is �rst order stationary if it has a constant mean. It is second
order, or weakly or covariance stationary if also has constant variances and con-
stant covariances between yt and yt�i, i.e. the autocovariances (covariances with
itself in previous periods) are only a function of i (the distance apart of the ob-
servations) not t, the time they are observed. These autocovariances summarise
the dependence between the observations and they are often represented by the
autocorrelation function or correlogram, the vector (graph against i) of the auto-
correlations ri = Cov(yt; yt�i)=V ar(yt). If the series is stationary, the correlogram
converges to zero quickly.
The order of integration is the number of times a series must be di¤erenced

to make it stationary (after perhaps removing deterministic elements like a linear
trend). So a series, yt; is said to be Integrated of order zero, I(0), if yt is stationary;
integrated of order one, I(1), if �yt = yt � yt�1 is stationary; integrated of order
two, I(2), if

�2yt = �yt ��yt�1 = (yt � yt�1)� (yt�1 � yt�2) = yt � 2yt�1 + yt�2

is stationary. Notice that �2yt 6= �2yt = yt � yt�2.
In examining dynamics it will be useful to use the Lag Operator, L, sometimes

known as the backward shift operator B.

Lyt = yt�1; L
2yt = yt�2; etc

�yt = (1� L)yt; �2yt = (1� L)2yt:

7.1. White noise processes

A stochastic process is said to be White Noise if

E("t) = 0;

E("2t ) = �2;

E("t"t�i) = 0; i 6= 0

We will use "t below to denote white noise processes.
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7.2. Autoregressive processes

A �rst order (one lag) autoregressive process (AR1) takes the form:

yt = �yt�1 + "t;

yt(1� �L) = "t;

with E(yt) = 0; and is stationary if j � j< 1: If it is stationary, then by repeated
substitution, we get the sum of a geometric progression:

yt = "t + �"t�1 + �
2"t�2 + �

3"t�3:::: (7.1)

yt = (1� �L)�1"t; (7.2)

the variance of yt is E(y2t ) = �
2=(1� �2) and the correlations between yt and yt�i,

ri = �
i, so decline exponentially. A constant can be included yt = �+ �yt�1 + "t;

then E(yt) = �=(1 � �). If the process is stationary, the parameters of the AR
model can be estimated consistently by Least Squares, though the estimates will
not be unbiased (yt�1 is uncorrelated with "t but not independent since it is
correlated with "t�1); the estimate of � will be biased downwards.
A p th order autoregression (ARp) takes the form:

yt = �1yt�1 + �2yt�2 + :::+ �pyt�p + "t

yt � �1yt�1 � �2yt�2 � :::� �pyt�p = "t
(1� �1L� �2L2 � :::� �pLp)yt = "t:

The last expression is a p th order polynomial in the lag operator, which we can
write Ap(L). yt is stationary if all the roots (solutions), zi; of 1��1z��2z2� :::�
�pz

p = 0 lie outside the unit circle (are greater than one in absolute value). If a
root lies on the unit circle, some zi = 1; the process is said to exhibit a unit root.
The condition is sometimes expressed in terms of the inverse roots, which must
lie inside the unit circle. Usually we just check that

P
�i < 1 for stationarity.

Consider the case of an AR1 process

yt = �yt�1 + "t:

For stability, the solution to (1� �z) = 0; must be greater than unity in absolute
value, since this implies z = 1=� this requires �1 < � < 1: For an AR2 the real
parts of solution to the two solutions to the quadratic (1 � �1z � �2z2) must be
greater than unity.
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7.3. Random Walks

If � = 1; there is said to be a unit root and the AR1 becomes a random walk:

yt = yt�1 + "t;

or �yt = "t: Substituting back

yt = "t + "t�1 + :::"1 + y0;

so shocks have permanent e¤ects. A random walk with drift is of the form:
�yt = �+ "t:
In both these cases, �yt is stationary, I(0), but yt is non-stationary, I(1). If

there is no drift the expected value of yt will be constant at zero, if y0 = 0;
but the variance will increase with t. If there is a drift term the expected value
of yt; as well as the variance, will increase with t. Random walks appear very
often in economics, e.g. the e¢ cient market hypothesis implies that, to a �rst
approximation, asset prices should be random walks.

7.4. Moving Average processes

A �rst order moving average process (MA1) takes the form

yt = "t + �"t�1;

a q th order moving average:

yt = "t + �1"t�1 + �2"t�2 + :::+ �q"t�q;

yt = (1 + �1L+ �2L
2 + :::+ �qL

q)"t = B
q(L)"t:

Cov(yt; yt�i) = 0, for i > q: A �nite order moving average process is always
stationary. Any stationary process can be represented by a (possibly in�nite)
moving average process. Notice that the AR1 is written as an in�nite MA process
in (7.1). The parameters of the MA model cannot be estimated by OLS, but
maximum likelihood estimators are available. If a MA process is invertible we can
write it as an AR, i.e. Bq(L)�1yt = "t: Notice that if we take a white noise process
yt = "t and di¤erence it we get

�yt = "t � "t�1

a moving average process with a unit coe¢ cient.
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7.5. Autoregressive Integrated Moving Average (ARIMA) processes

Combining the AR and MA processes, gives the ARMA process. The �rst order
ARMA(1,1) with intercept is

yt = �+ �yt�1 + "t + �"t�1

In practice, the data are di¤erenced enough times, say d, to make them station-
ary and then modelled as an ARMA process of order p and q. This gives the
Autoregressive Integrated Moving Average, ARIMA(p,d,q) process, which can be
written using the lag polynomials above as:

Ap(L)�dyt = �+B
q(L)"t:

For instance, the ARIMA(1,1,1) process is

�yt = �+ ��yt�1 + "t + �"t�1

ARIMA models often describe the univariate dynamics of a single economic time-
series quite well and are widely used for forecasting.

7.6. Trend and di¤erence stationary processes

Most economic time-series, e.g. log GDP, are non-stationary, trended. The trend
can be generated in two ways. First, the traditional assumption was that the
series could be regarded as stationary once a deterministic trend was removed.
For instance:

yt = �+ �yt�1 + 
t+ "t (7.3)

with j � j< 1 is a trend stationary process: The e¤ects of the shocks "t are
transitory and die away through time, since "t�i is multiplied by �i when you
substitute back, see (7.1) above. If the variables are in logs, the long run growth
rate is g = 
=(1� �): Second the series could be regarded as a random walk with
drift, di¤erence stationary:

�yt = �+ "t

yt = �+ yt�1 + "t

The long run growth rate is �:
We want to test the null of a di¤erence stationary process (one with a unit

root) against the alternative of a trend stationary process. Substiture 
 = g(1��)
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then substract yt�1 from both sides, so we can write the trend stationary process
as:

�yt = �+ (�� 1) (yt�1 � gt) + "t (7.4)

�yt = �+ �(yt�1 � gt) + "t (7.5)

where � = � � 1. If � = 1 or equivalently � = 0, we get the random walk with
drift:with growth rate �: Substituting back we get

yt = �+ (�+ yt�2 + "t�1) + "t

yt = yt�2 + 2�+ "t + "t�1

continuing the process to period zero, we get:

yt = y0 + �t+

t�1X
i=0

"t�i:

In this case, the di¤erence stationary process, the efects of the shocks are perma-
nent or persistent, they last for ever, and the series is determined by an initial
value, y0; a deterministic trend �t; and a �stochastic trend�,

Pt�1
i=0 "t�i; the sum of

past errors.
If we had not restricted (7.4) so that the trend term dropped out when � = 0,

there would be a quadratic trend in yt. Show this by substituting back in

yt = �+ yt�1 + 
t+ "t

yt = �+ (�+ yt�2 + 
(t� 1) + "t�1) + 
t+ "t (7.6)

etc.

7.7. Testing for unit roots

Choosing between the trend stationary and di¤erence stationary model is a matter
of determining whether � = 0 or equivalently � = 1; whether there is a �unit root�
in yt. To do this we can estimate (7.4) by running a regression of �yt on a
constant, yt�1 and a linear trend; estimate b� the coe¢ cient on the lagged level
of yt�1; construct the �t statistic� �� = b�=SE(b�) to test H0 : � = 0; against
H1 : � < 0. If we do not reject the null we conclude that there is a unit root in
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yt, it is integrated of order one, I(1), stationary after being di¤erenced once. If
we reject the null we conclude that yt is trend stationary I(0). This is a one-sided
test and if b� > 0, we do not reject the null of a unit root. The test statistic ��
does not have a standard t distribution, but a Dickey Fuller distribution and the
critical value is -3.5 at the 5% signi�cance level, when a trend is included. This
is because under H0 the regressor, yt�1 is non-stationary. If there is no trend
included in the regression the 5% critical value is -2.9. Most programs will give
you these critical values or the relevant p values.
To get good estimates of (7.4) we require that "t is white noise. Often this

will not be the case and the error will be serially correlated. To remove this serial
correlation, lags of the dependent variable are added to give the �Augmented
Dickey Fuller�(ADF) regression:

�yt = �+ �yt�1 + 
t+

pX
i=1

�i�yt�i + "t

where p is chosen to try to make the residual white noise. Show that this is a
reparameterisation of a AR(p+1) with trend. Again the procedure is to use the t
ratio on � with the non standard critical values to test the null hypothesis � = 0
against the alternative � < 0.
To test for I(2) versus I(1) you just take a further di¤erence:

�2yt = �+ ��yt�1 +

pX
i=1

�i�
2yt�i + "t

if it was thought that there might be a trend in the change (not common for
economic series) it could be included also. Again H0 : � = 0; against H1 : � < 0.
There are a range of other procedures for determining whether there is a unit

root. They di¤er, for instance, in how they correct for serial correlation (in a
parametric way like the ADF where you allow for lags or in a non-parametric way
like Phillips Peron where you allow for window size); whether they include other
variables; whether they use the null of a unit root like the ADF or the null of
stationarity, like KPSS; whether they use GLS detrending; and whether they use
both forward and backward regressions. EViews gives you a lot of choices.
Most of these tests have low power, it is very di¢ cult to distinguish � = 1

from a stationary alternative in which � is close to unity. The power of the tests
depends on the span of the data not the number of observations. For instance UK
unemployment rates 1945-1985 appear I(1), UK unemployment rates 1855-1985
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appear I(0). The tests are also sensitive to step changes, an I(0) process with a
single change in level will appear I(1), as it should since the shock (change in level)
is permanent. The order of integration is a univariate statistical summary of how
the time series moves over the sample, it is not an inherent structural property of
the series. Whether you treat a variable as I(0) or I(1) depends on the purpose
of the exercise, for estimation it is often safer to treat it as I(1):

8. Dynamic Linear Regression, ARDL models

When we look at the relationship between variables, there are usually lags between
the change in one variable and the e¤ect on another. The distributed lag of order
q, DL(q) regression model takes the form:

yt = �+ �0xt + �1xt�1 + :::+ �qxt�q + ut

notice that it is similar to a moving average, except that here the shocks are
observed, xt; rather than being unobserved. We can combine the distributed lag
with an autoregressive component to give the ARDL(p,q) process:

yt = �0 + �1yt�1 + :::+ �pyt�p + �0xt + �1xt�1 + :::+ �qxt�q + ut (8.1)

where ut is usually a white noise error, though it could be moving average. If the
error is white noise, the parameters can be estimated consistently by OLS, though
the estimates are not unbiased. yt is stationary, conditional on xt; the process is
stable, if all the roots (solutions), zi; of the characteristic equation

1� �1z � �2z2 � :::� �pzp = 0 (8.2)

lie outside the unit circle (are greater than one in absolute value). We usually
check that

P
�i < 1: In this case, if xt is constant, say at x; then yt will converge

to a constant, say y; and the long run relation between them will be:

y =
�0

1�
Pp

i=1 �i
+

Pq
i=0 �i

1�
Pp

i=1 �i
x = �0 + �xx:

This can be obtained by setting yt�i = y and xt�i = x for all i. This long-run
solution is usually interpreted as the long-run equilibrium or target value for yt and
can be calculated from the estimated regression coe¢ cients. Standard errors for
the long-run coe¢ cients can be calculated by the delta method, which is available
in most programmes.
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This procedure is appropriate in quite a wide variety of circumstances including
if all the variables are I(0) and xt is exogenous; or if all the variables are I(1), there
is a single cointegrating relationship and xt is exogenous; or if there are mixtures
of I(0) and cointegrating I(1) variables such that ut is white noise. See below for
more details.

8.1. ARDL(1,1)

ARDL models or dynamic linear regressions are widely used to examine the rela-
tionship between economic variables. We will use the ARDL(1,1) for illustration,
this is:

yt = �0 + �1yt�1 + �0xt + �1xt�1 + ut: (8.3)

It is stable if �1 < �1 < 1, and then has a long run solution:

y�t =
�0

1� �1
+
�0 + �1
1� �1

xt = �0 + �xxt:

Where y�t is the target or long run equilibrium value for yt to which it would tend
in the absence of further shocks to xt and ut: There are a number of other useful
ways of rewriting (reparameterizing) (8.3).

8.1.1. Bewley transform

A trick to get the standard errors is to write (8.3) as

yt � �1yt = �0 � �1(yt � yt�1) + (�0 + �1)xt � �1(xt � xt�1) + ut:

and divide through by (1� �1) to give

yt =
�0

(1� �1)
� �1
(1� �1)

�yt +
(�0 + �1)

(1� �1)
xt �

�1
(1� �1)

�xt +
ut

(1� �1)

while�yt is clearly correlated with ut the equation can be estimated by the method
of instrumental variables (see below) using one, yt�1, xt and xt�1 as instruments.
The coe¢ cient of xt will be the long-run coe¢ cient and its standard error will be
the same as got by the delta method. :
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8.1.2. Error Correction Models

Write (8.3) as

yt � yt�1 = �0 + (�1 � 1)yt�1 + �0(xt � xt�1) + (�0 + �1)xt�1 + ut

�yt = a0 + b0�xt + a1yt�1 + b1xt�1 + ut (8.4)

where a0 = �0; b0 = �0; a1 = (�1 � 1); b1 = �0 + �1; or in terms of adjustment to
a long-run target:

�yt = �1�y
�
t + �2(y

�
t�1 � yt�1) + ut

where the long-run target or equilibrium (as calculated above) is

y�t = �0 + �xxt;

and the �i are adjustment coe�cients which measure how y adjusts to changes
in the target and deviations from the target. Notice a0 = �2�0; a1 = ��2; b0 =
�1�x; b1 = �2�x. This form is usually known as an �Error (or equilibrium) Correc-
tion Model�ECM. The dependent variable changes in response to changes in the
target and to the error, the deviation of the actual from the equilibrium in the
previous period: (y�t�1 � yt�1):
An alternative parameterization, which unlike the ECM nests the partial ad-

justment model is:

�yt = �0 + (�1 � 1)yt�1 + (�0 + �1)xt � �1�xt + ut:

When you reparameterize a model, as we did above, you estimate exactly
the same number of parameters (4 in this case), just written in di¤erent ways.You
will get identical estimates of say, the long-run coe¢ cient, whether you estimate
it as an ARDL, ECM or by a non-linear procedure. The statistical properties of
the model do not change, the estimated residuals, standard error of the regression
and the maximised log-likelihood are identical between the di¤erent versions. R2

will change, because the proportion of variation explained is measured in terms of
a di¤erent dependent variable, �yt in the ECM rather than yt in the ARDL: Any
RESET tests that use �tted values of the dependent variable will also change.
Use the misspeci�cation tests which use the �tted values of �yt:
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8.2. Restrictions

When you restrict a model, you reduce the number of parameters estimated
and such restrictions are testable. The ARDL(1,1) nests a number of interesting
restricted special cases, including:
(a) Static: �1 = 0; �1 = 0:
(b) First di¤erence: �1 = 1; �1 = ��0
(c) Partial Adjustment Model:�1 = 0
(d) First order disturbance serial correlation: �1 = ��0�1
(e) Unit long-run coe¢ cient: �1 + �0 + �1 = 1
(f) Random Walk with drift: �1 = 1; �1 = �0 = 0:
A useful procedure in many circumstances is to start with a general model,

e.g. the ARDL(1,1) and test down to speci�c restricted cases. This general to
speci�c procedure has the advantage that any tests on the general model are valid.
Whereas if you start from the restricted model, the tests will not be valid if the
model is misspeci�ed.
Case (d) is got by assuming that the model is:

yt = �+ �xt + vt; vt = �vt�1 + "t

where "t is white noise, this can be written:

yt = �+ �xt + �vt�1 + "t

noting that
vt = yt � �� �xt; and vt�1 = yt�1 � �� �xt�1

yt = �+ �xt + �(yt�1 � �� �xt�1) + "t
yt = �(1� �) + �xt + �yt�1 � ��xt�1 + "t

which is of the same form as (8.3) with the restriction that the coe¢ cient of xt�1
equals the negative of the product of the coe¢ cients of xt and yt�1; i.e. �1 = ��0�1
in terms of the parameters of the unrestricted model: This is sometimes called the
common factor model, since it can be written (1��L)yt = (1��L)(�+�xt)+ "t,
both sides of the static model are multiplied by the common factor (1� �L): The
restricted model (with AR1 errors) is not linear in the parameters and is estimated
by Generalised Least Squares or Maximum Likelihood.
In case (e) the restricted model can be written:

�yt = a0 + b0�xt + a1(yt�1 � xt�1) + et:

and the restriction is equivalent to assuming b1 = �a1 in (8.4).
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8.3. ARDL(1,1,1)

The structure generalises to more explanatory variables, e.g. the ARDL(1,1,1)
model

yt = �0 + �1yt�1 + �0xt + �1xt�1 + 
0zt + 
1zt�1 + ut: (8.5)

has a long run solution:

y =
�0

1� �1
+
�0 + �1
1� �1

x+

0 + 
1
1� �1

z = �0 + �xx+ �zz:

Notice that our error correction adjustment process

�yt = �1�y
�
t + �2(y

�
t�1 � yt�1) + ut

y�t = �0 + �xxt + �zzt;

now imposes restrictions. In the case of one exogenous variable, there were four
ARDL parameters (�0; �1; �0; �1) and four theoretical parameters (�1; �2; �0; �x)
so no restrictions. In the case of two exogenous variables there are six ARDL para-
meters, (�0; �1; �0; �1; 
0; 
1) but only �ve theoretical parameters (�1; �2; �0; �x; �z):
What is the restriction?

8.4. Adaptive Expectations

De�ne the expected value of xt+1 conditional on information available at time t,
as:

E(xt+1 j It) = xet ;
agents determine their actions according to:

yt = �x
e
t + ut (8.6)

and determine their expectations according to:

xet � xet�1 = �(xt � xet�1)
they adjust their forecast proportional to the forecast error they made in the
previous period (note xet�1 is the forecast of xt made in the previous period). This
can be written:

xet = �xt + (1� �)xet�1
(1� (1� �)L)xet = �xt

xet =
�xt

(1� (1� �)L) = �
1X
i=0

(1� �)ixt�i
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substituting this exponentially weighted moving average of past xt in (8.6) gives:

yt = �

�
�xt

(1� (1� �)L)

�
+ ut (8.7)

premultiply by (1� (1� �)L) to give

(1� (1� �)L)yt = ��xt + (1� (1� �)L)ut

yt = ��xt + (1� �)yt�1 + ut � (1� �)ut�1
an ARDL(1,0) with a MA1 error, with a restriction that the AR and MA coe¢ -
cients should be equal and of opposite sign.
This type of transformation (known as the Koyck transform) can be used to

get rid of a variety of exponentially weighted in�nite distributed lags.

9. Cointegration

9.1. Introduction

Suppose yt and xt are I(1) then in general any linear combination of them will also
be I(1). If there is a linear combination that is I(0), they are said to cointegrate.
If they cointegrate, they have a common stochastic trend which is cancelled out
by the linear combination; and this linear combination is called the cointegrating
vector, which is often interpreted as an equilibrium relationship.
Suppose we have data on st; pt; p�t , the logarithms of the spot exchange rate

(domestic currency per unit foreign), domestic and foreign price indexes and that
each of these are I(1). Purchasing Power Parity says that the real exchange rate
et = st � pt + p�t should be stationary, i.e. et = e + ut where e is the equilibrium
real exchange rate and ut is a stationary (not necessarily white noise) error. The
cointegrating vector is then (1;�1; 1): It is quite common in economics to get
ratios of non-stationary variables being approximately stationary. These �great
ratios�include the real exchange rate, the savings ratio, the velocity of circulation
of money, the capital-output ratio, the share of wages in output, the pro�t rate,
etc. In each case a linear combination of the logarithm of the variables with
cointegrating vectors of plus and minus ones should be stationary and this can be
tested using the unit root tests described above.
The coe¢ cient does not need to be unity. If

yt = �+ �xt + ut (9.1)
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and ut is stationary, the cointegrating vector is (1;��) since (yt � �xt = � + ut)
is I(0).
If yt and xt are I(1) and do not cointegrate, say they are independent unrelated

random walks, the error in (9.1) will be I(1) and this will be a �spurious�regression.
As T ! 1, the R2 of this regression will go to unity and the t ratio for b� will
go to a non-zero random variable. Thus even if there is no relationship, the
regression would indicate a close relationship. Therefore it is important to test
for cointegration. A similar issue arises in the ARDL(1,1). Write it in the ECM
form:

�yt = a0 + b0�xt + a1yt�1 + b1xt�1 + ut:

This equation does not seem to balance, the left hand side �yt is I(0) and there
are two I(1) terms yt�1 and xt�1 on the right hand side. It only balances if a
linear combination of the I(1) terms is I(0), that is if yt and xt cointegrate so that
yt � �xxt is I(0) with cointegrating vector (1;��x), in:

�yt = a0 + b0�xt + �(yt�1 � �xxt�1) + ut (9.2)

Notice that if they cointegrate � must be non-zero and negative (this is the feed-
back that keeps yt and xt from diverging. We can test for this, though the critical
values are non standard, see below. Notice we are free to normalise the cointegrat-
ing vector, since a1yt�1+b1xt�1 is I(0), we could also have called the cointegrating
vector (a1; b1) = (�;���x):
With only two I(1) variables there can only be a single cointegrating vector, but

with more than two variables there can be more than one cointegrating vector and
any linear combination of these cointegrating vectors will also be a cointegrating
vector. Suppose that we have data on domestic and foreign interest rates and
in�ation (rt; r�t ;�pt;�p

�
t ) and all are I(1) (this implies that pt is I(2)). If real

interest rates (rt��pt and r�t��p�t ) are I(0) with cointegrating vectors (1; 0;�1; 0)
and (0; 1; 0;�1); then the real interest rate di¤erential (rt � �pt) � (r�t � �p�t )
would also be I(0), with cointegrating vector (1;�1;�1; 1).

9.2. Ways to test for cointegration.

9.2.1. Known cointegrating vector

If the cointegrating vector is known a priori (as with the real exchange rate or
real interest rate examples above) we can form the hypothesised I(0) linear com-
bination (the log of the real exchange rate or the real interest rates) and use an
ADF test to determine whether it is in fact I(0).
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9.2.2. Single unknown cointegrating vector

There are three procedures here.
(a) Those that can be used for multiple unknown cointegrating vectors dis-

cussed below.
(b) Estimating an ARDL model and testing for the existence of a long-run

relationship, i.e. test the null hypothesis that the levels xt�1 and yt�1 should
not appear in the equation or equivalently that � = 0 in (9.2) above, using the
appropriate (non-standard) critical values, which are given in Pesaran, Shin and
R.J. Smith, Journal of Applied Econometrics, 2001, p289-326, Bounds Testing
Approaches to the Analysis of Level Relationships..
(c) Running the levels equation (9.1) above and testing whether the residuals

are I(1), using an ADF test and the appropriate critical values, which are di¤erent
from those for an ADF on an ordinary variable. This is the original Engle-Granger
procedure. Although the estimates of (9.1) are �superconsistent�(converge to their
true values at rate T rather than

p
T ); (9.1) is clearly misspeci�ed because it

omits the dynamics, thus the estimates can be badly biased in small samples. In
addition doing a unit root test on the residuals, imposes very strong restrictions
on the short-run dynamics, which may not be appropriate. Thus the original
Engle-Granger procedure is not recommended in most cases. If you know that
one variable is exogenous use (b), if you do not know which is the exogenous
variable start with (a) and test for exogeneity.

9.2.3. Multiple unknown cointegrating vectors

Again there are a variety of procedures, but the most commonly used is the
Johansen procedure discussed below. This procedure operates in the context of a
VAR, which we consider �rst.

9.3. Vector Autoregressions and cointegration

9.3.1. VARs

The generalisation of an AR2 to a vector is the VAR2:

yt = A0 + A1yt�1 + A2yt�2 + "t

where yt is now a m� 1 vector, A0 a m� 1 vector, A1 and A2 are m�m matrices
and "t � N(0;�); where � is a m�m matrix with elements �ij.
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For m = 2; :::yt = (y1t; y2t)
0 the VAR is:

y1t = a01 + a
1
11y1t�1 + a

1
12y2t�1 + a

2
11y1t�2 + a

2
12y2t�2 + "1t;

y2t = a02 + a
1
21y1t�1 + a

1
22y2t�1 + a

2
21y1t�2 + a

2
22y2t�2 + "2t:

Each equation of the VAR can be estimated consistently by OLS and the covari-
ance matrix � can be estimated from the OLS residuals,

b�ij = 1

T

TX
t=1

b"itb"jt
where b�11 is the estimated variance of "1t; b�12 the estimated covariance of "1t and
"2t:
A variable y2t is said to Granger cause y1t if knowing current values of y2t helps

you to predict future values of y1t equivalently, current y1t is explained by past
y2t: In this case, y2t is Granger causal with respect to y1t if either a112 or a

2
12 are

non zero. You can test that they are both zero with a standard F test of linear
restrictions. The restricted model just excludes y2;t�1 and y2;t�2 from the equation
for y1t: Granger causality is rarely the same as economic causality, particularly
because expectations cause consequences to precede their cause: weather forecasts
Granger Cause the weather.
More lags can be included and you can decide the appropriate lag length by

Likelihood Ratio tests or model selection criteria like the AIC or SBC. Make sure
that you use the same sample for the restricted and unrestricted model; i.e. do
not use the extra observation that becomes available when you shorten the lag
length. If the lag length is p, each equation of the VAR with intercept has 1+mp
parameters. This can get large, 4 lags in a 4 variable VAR gives 17 parameters in
each equation. Be careful about degrees of freedom.
A pth order VAR

yt = A0 +

pX
i=1

Aiyt�i + "t

is stationary if all the roots of the determinantal equation j I �A1z�A2z2� :::�
Apz

p j= 0 lie outside the unit circle. When you estimate a VAR, EViews will give
you a graph of the inverse roots, which should lie inside the unit circle for the
variables to all be stationary.
We can reparameterise the VAR2:
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yt = A0 + A1yt�1 + A2yt�2 + "t

as:

yt � yt�1 = A0 � (I � A1 � A2)yt�1 � A2(yt�1 � yt�2) + "t
�yt = A0 � �yt�1 + ��yt�1 + "t

and the VARp as:

�yt = A0 � �yt�1 +
p�1X
i=1

�i�yt�i + "t:

Notice that this is the vector equivalent of the Augmented Dickey Fuller regression
that we used above for testing for unit roots. Express the �i in terms of the Ai:

9.3.2. Cointegration in VARs

If all the variables, the m elements of yt, are I(0), � is a full rank matrix. If all
the variables are I(1) and not cointegrated, � = 0, and a VAR in �rst di¤erences
is appropriate. If the variables are I(1) and cointegrated, with r cointegrating
vectors, then there are r cointegrating relations, combinations of yt that are I(0),

zt = �
0yt

where zt is a r� 1 vector and �0 is a r�m matrix. Then we can write the model
as:

�yt = A0 � �zt�1 +
p�1X
i=1

�i�yt�i + "t;

in which the I(0) dependent variable is only explained by I(0) variables and � is a
m� r matrix of �adjustment coe¢ cients�which measure how the deviations from
equilibrium (the r I(0) variables zt�1) feed back on the changes. This can also be
written:

�yt = A0 � ��0yt�1 +
p�1X
i=1

�i�yt�i + "t;

so � = ��0 has rank r < m if there are r cointegrating vectors. If there are r < m
cointegrating vectors, then yt will also be determined by m� r stochastic trends,
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and will have m � r roots on the unit circle and m roots outside the unit circle.
If there is cointegration, some of the � must be non-zero, there must be some
feedback on the yt to keep them from diverging, i.e. there must be some Granger
causality in the system.
If there are r cointegrating vectors and � has rank r, it will have r non-zero

eigenvalues and Johansen provided a way of estimating the eigenvalues and two
tests for determining how many of the eigenvalues are di¤erent from zero. These
allow us to determine r, though the two tests may give di¤erent answers. The
Johansen estimates of the cointegrating vectors � are the associated eigenvectors.
There is an �identi�cation�problem, since the � and � are not uniquely deter-

mined. We can always choose a non-singular r�rmatrix P such that (�P )(P�1�) =
� and the new estimates �� = (�P ) and �� = (P�1�) would be equivalent,
though they might have very di¤erent economic interpretations. Put di¤erently,
if zt�1 = �

0yt�1 are I(0) so are z�t�1 = P
�1�0yt�1, since any linear combination of

I(0) variables is I(0). We need to choose the appropriate P matrix to allow us
to interpret the estimates. This requires r2 restrictions, r on each cointegrating
vector. One of these is provided by normalisation, we set the coe¢ cient of the
�dependent variable�to unity, so if r = 1 this is straightforward (though it requires
the coe¢ cient set to unity to be non-zero). If there is more than one cointegrat-
ing vector it requires prior economic assumptions. The Johansen identi�cation
assumption, that the � are eigenvectors with unit length and orthogonal, do not
allow an economic interpretation. Programs like EViews or Micro�t allow you
to specify the r2 just identifying restrictions and test any extra �over-identifying�
restrictions.
As we saw above with the Dickey Fuller regression, there is also a problem

with the treatment of the deterministic elements. If we have a linear trend in
the VAR, and do not restrict the trends, the variables will be determined by
m� r quadratic trends. To avoid this (economic variables tend to show linear not
quadratic trends), we enter the trends in the cointegrating vectors,

�yt = A0 � �(�0yt�1 + ct) +
p�1X
i=1

�i�yt�i + "t;

so if an element of � is zero the trend drops out. Most programs give you a choice
of how you enter trends and intercepts; unrestricted intercepts and restricted
trends, option 4 in Eviews, is a good choice for trended economic data.
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9.3.3. Example: money demand

Consider a VAR1 in the logarithms of real money and income, which are both
I(1) with a linear trend:

mt = a10 + a11mt�1 + a12yt�1 + 
1t+ "1t

yt = a20 + a21mt�1 + a22yt�1 + 
2t+ "2t

and zt = mt � �yt is I(0). The cointegrating vector is (1;��) and we have nor-
malised the equation by setting the coe¢ cient of mt to unity. This just identi�es
the cointegrating vector for r=1. The VECM is:

�mt = a10 + (a11 � 1)mt�1 + a12yt�1 + 
1t+ "1t

�yt = a20 + a21mt�1 + (a22 � 1)yt�1 + 
2t+ "2t;

or

�mt = a10 + �11mt�1 + �12yt�1 + 
1t+ "1t

�yt = a20 + �21mt�1 + �22yt�1 + 
2t+ "2t:

We can write this

�mt = a10 + �11(mt�1 +
�12
�11
yt�1) + 
1t+ "1t

�yt = a20 + �21(mt�1 +
�22
�21
yt�1) + 
2t+ "2t:

Imposing the cointegration restriction, that the long-run coe¢ cients are the same
in both equations,

�12
�11

=
�22
�21

it becomes:

�mt = a10 � �1(mt�1 � �yt�1) + 
1t+ u1t
�yt = a20 � �2(mt�1 � �yt�1) + 
2t+ u2t

where ��1 = �11 etc. Thus

� =

�
��1 +�1�
��2 +�2�

�
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which is clearly of rank 1, since a multiple of the �rst column equals the second
column. A natural over-identifying restriction to test in this context would be that
� = 1: To restrict the trend we could put it in the cointegrating vector, saving
one further parameter:

�yt = a10 � �1(mt�1 � �yt�1 + 
t) + u1t
�mt = a10 � �2(mt�1 � �yt�1 + 
t) + u2t

If yt is weakly exogenous the �1 = 0; which can be tested.

10. Endogenous regressors and IV Estimation

10.1. Exogeneity

Exogeneity is a di¢ cult concept, Hendry�s text Dynamic Econometrics is probably
the best available treatment. There are a number of di¤erent de�nitions, which
fall into two classes of approach.
The �rst approach starts with the joint distribution of the random variables,

yt; xt; which can be written as the product of the distribution of yt conditional on
xt and the marginal distribution of xt :

Dj(yt; xt; �j) = Dc(yt j xt; �c)Dm(xt; �m) (10.1)

�j is a vector of parameters of the joint distribution, �c of the conditional distri-
bution, �m of the marginal. The distribution that we will be interested in is the
distribution of yt conditional on xt and the parameters that we will be interested
in are the parameters of the conditional distribution �c which we will usually de-
note by �:Weak exogeneity requires that the parameters of interest should be
functions only of the parameters of the conditional distribution, �c = � = (�; �2),
and that the parameters of the conditional and marginal distributions should be
�variation free�: there are no restrictions linking them. Essentially this says that
we can ignore the information in the marginal distribution of x for the purpose of
estimating particular parameters. Notice that exogeneity is not an inherent prop-
erty of x, it is only de�ned relative to the parameters you want to estimate. x
may be exogenous for some parameters and not for others. This is the assumption
that we need for e¢ cient inference about the parameters of interest. The main
reasons for it failing in economics are simultaneity, where the regressors are jointly
determined with the dependent variable (prices and quantities are simultaneously
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determined by demand and supply), and measurement errors in the regressors.
In both cases we need information about the processes generating the regressors
to consistently estimate the parameters of interest. Strong exogeneity is weak
exogeneity plus Granger Non-causality of yt with respect to xt; we need this as-
sumption for forecasting. Super exogeneity requires that the parameters of the
conditional distribution, �c, should be invariant to changes in the parameters of
the marginal distribution of xt. In this case even if the process generating xt
changes, the parameters of our regression do not change. We need this for pol-
icy analysis which usually involves changing right hand side policy variables and
essentially this assumption precludes the Lucas Critique. Notice that these three
de�nitions are presented in terms of the distributions of the observables, yt and
xt:
The second approach, very common in the text books, presents the assump-

tions in terms of the unobservable error or disturbance ut: Notice that our assump-
tion, in terms of the conditional distribution of y, Dc(y j X; �) � N(X�; �2I),
is equivalent to an assumption in terms of the unconditional distribution of the
disturbance u � N(0; �2I): In this framework, there are three types of exogeneity
assumptions that are made about X. Firstly, it may be a set of �xed numbers,
non-stochastic or deterministic. These phrases are all equivalent ways to de-
scribe the fact that X is not a random variable. Apart from trends and seasonals
non-stochastic variables are rare in economics. Secondly, it may be strictly ex-
ogenous, a set of random variables which are distributed independently of the
disturbance term. Thirdly, it may be predetermined a set of random variables
which are uncorrelated with the disturbance term. If X is strictly exogenous, xt is
uncorrelated with the whole sequence of ut; t = 1; 2; :::; T . If it is predetermined,
it is only uncorrelated with the current value of ut: Typically predetermined vari-
ables are lagged (past) values of yt which are included in the xt.

10.2. The Simultaneous Equations Model.

Consider the simple demand and supply model for an agricultural product in
structural form as

qdt = 
10 + �12pt + 
11yt + u1t

qst = 
20 + �22pt + 
22wt + u2t

demand is determined by price and income, supply is determined by price and
the weather and price adjusts so that demand equals supply qdt = qst = qt: This
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system simultaneously determines price and quantity in terms of the exogenous
variables income and the weather and the errors:

pt = [�12 � �22]
�1 f(
20 � 
10)� 
11yt + 
22wt + (u2t � u1t)g

qt = [�12 � �22]
�1 f(�12
20 � �22
10g � �22
11yt + �12
22wt + (�12u2t � �22u1t)g

pt = �10 + �11yt + �12wt + v1t

qt = �20 + �21yt + �22wt + v2t

this is called the reduced form. The standard demand-supply system in economics
is normalised in an unusual form, making quantity the dependent variable in both
equations. Usually systems are normalised so that each endogenous variable is the
dependent variable in each equation. Normalisation, speci�es that a coe¢ cient of
a dependent variable equals unity.
We can write the system in matrix notation as

�
1 ��12
1 ��22

� �
qt
pt

�
=

�

10 
11 0

20 0 
22

�24 1
yt
wt

35+ � u1t
u2t

�

Byt = �xt+ut; E(utu
0
t) = 


yt = B�1�xt +B�1ut

yt = �xt + vt

E(vtv
0
t)= � = B�1
B�10

Where B is a m�m matrix, � is a m� k matrix.
In the demand-supply case m = 2; k = 3: Notice that if xt= yt�1 the reduced

form of the system is a VAR. In general OLS estimates of the structural form
will be inconsistent since in the demand equation u1t will be correlated with pt
(which is a function of u1t as the reduced form equations show). We can estimate
the reduced form by OLS. The identi�cation problem is whether we can recover
the m�m+m� k B and � coe¢ cients from the m� k estimates in �: We are
obviously m2 coe¢ cients short and the information has to come from somewhere
else, e.g. economic theory. For each equation we need d > m extra pieces of
information, one of these will come from normalisation, we set the coe¢ cient of
the dependent variable to unity. This is the order condition, a necessary but not
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su¢ cient condition for identi�cation. This condition is written in lots of di¤erent
but equivalent ways in the literature. One way of expressing it for a particular
equation is that the number of excluded exogenous variables (not appearing in
that equation) must be greater or equal to the number of included right hand
side endogenous variables. The necessary condition is the rank condition. When
d < m; the equation is said to be underidenti�ed or not identi�ed; when d = m
it is said to be exactly identi�ed or just identi�ed; when d > m it is said to be
overidenti�ed. You can have a system with some equations identi�ed and others
not identi�ed.
In the demand and supply example, both equations are exactly identi�ed be-

cause we have two restrictions in each case, d = 2;m = 2. In the demand equation
we have �11 = 1; 
12 = 0: In the supply equation �21 = 1; 
21 = 0: Estimation can
then be done by Two stage Least Squares. First estimate the reduced form and
obtain the predicted values for pt and qt :bpt = b�10 + b�11yt + b�12wtbqt = b�20 + b�21yt + b�22wt
these are just functions of the exogenous variables and so are not correlated with
u1t and u2t and can be used in two second stage regressions estimating the struc-
tural equations

qt = 
10 + �12bpt + 
11yt + e1t
qt = 
20 + �22bpt + 
22wt + e2t

where e1t = u1t+ �i2bv1t neither of which are correlated with bpt. Two Stage Least
Squares, 2SLS, is an example of Instrumental Variables, IV, discussed below.
Consider another example, the simple Keynesian model of identity and con-

sumption function:

Yt = Ct + It;

Ct = �+ �Yt + ut:

Notice that identi�cation is not an issue for the identity, since there are no coef-
�cients to estimate. The (restricted) reduced form is

Yt =
�

1� � +
1

1� � It +
ut
1� �

Ct =
�

1� � +
�

1� � It +
ut
1� � :
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Notice the coe¢ cient of investment in the income equation is the standard Key-
nesian multiplier. The (unrestricted) reduced form which we can estimate is

Yt = �10 + �11It + v1t

Ct = �20 + �21It + v2t;

where v1t = v2t; etc. Clearly Yt is correlated with ut in the consumption function,
since as the reduced form shows ut determines Yt through consumption. What
is the covariance between Yt and ut? However we could estimate � by "indirect
least squares", ILS, as the ratio of the two reduced form coe¢ cients of investment,
where the lower case letters indicate deviations from the mean:

b�ILS = b�21b�11 =
P
ctit=

P
i2tP

ytit=
P
i2t
=

P
ctitP
ytit

:

This can only be done in exactly identi�ed cases, like this, where all the various
estimators (2SLS, IV, ILS and others) give the same estimates. Note that the
fourth term in the equation is the IV estimator that appears below for the exactly
identi�ed case.
Above we considered identi�cation just by restrictions on the coe¢ cient matri-

ces, B and �: But we can also get identi�cation partly through restrictions on the
covariance matrix 
: If we assume that 
 is diagonal, this gives us m(m � 1)=2
restrictions, that all the o¤ diagonal elements are zero. If we also assume that B
is triangular, all the elements above the diagonal are zero, this gives us another
m(m� 1)=2 restrictions. Together with the m normalisation restrictions, this to-
tals m2 and the system is identi�ed. Such a system is called recursive and can be
estimated by OLS on each equation. An example is:

y1t = 
1xt + "1t

y2t = �21y1t + 
2xt + "2t

y3t = �31y1t + �32y2t + 
3xt + "3t

with E("it"jt) = 0: "2t is not correlated with y1t because there is no direct link, y2t
does not in�uence y1t; and no indirect link, "2t is not correlated with "1t:So OLS
is consistent. The system is24 1 0 0

��21 1 0
��31 ��32 1

3524 y1ty2t
y3t

35 =
24 
1
2

3

35xt +
24 "1t"2t
"3t

35 :
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This identi�cation assumption is the basis of the Orthogonalised Impulse Re-
sponse functions, obtained by Choleski decomposition, used to examine the e¤ects
of shocks to the VARs. EViews will impose these restrictions using the order you
list the variables in. It also provides Generalised Impulse Response Functions,
which do not require identifying assumptions and are invariant to the order. But
these cannot be given a structural interpretation, since they do not identify the
structural errors "it:
Notice that the VAR is the reduced form of a structural system in which

instead of exogenous variables there appears the predetermined lagged values:

Byt = �yt�1+ut; E(utu
0
t) = 


yt = B�1�yt�1 +B
�1 ut

yt = �yt�1 + vt

E(vtv
0
t)= � = B�1
B�10

10.3. Instrumental Variables

Let us return to the LRM
y = X� + u

where X is a T � k matrix, but the X are not exogenous, so E(X 0u) 6= 0. This
may happen because of simultaneity (some of the X are jointly determined with
the y) or because some of the X are measured with error. In either case the
OLS estimates will be biased and inconsistent. Suppose that there exists a T � i,
matrix of �Instruments�, W; where i � k, which are correlated with X so that
E(W 0X) 6= 0 but are not correlated with the disturbances so that E(W 0u) = 0.
W will include the elements of X that are exogenous (including the column of
ones for the constant), but we need at least one instrument for each endogenous
X: If i = k, the model is said to be just-identi�ed, if i > k it is said to be over-
identi�ed. The condition i � k is the same order condition, we encountered in
simultaneous systems. There is also the rank condition from E(W 0X) 6= 0 to
ensure that (W 0X) is of full rank and (W 0X)�1 exists.
If the model is just or exactly identi�ed, the consistent instrumental variable

estimator is
�IV = (W 0X)�1W 0y

with variance-covariance matrix �2(W 0X)�1W 0W (W 0X)�1. The e¢ ciency of the
estimator will increase (the size of the standard errors reduce) with the correla-
tion between W and X. Notice this estimator chooses the � that imposes the
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orthogonality condition:

W 0eu = 0

W 0(y �Xe�) = 0

W 0y = W 0Xe�
(W 0X)

�1
W 0y = e�:

Notice that in the case of a single right hand side endogenous variable, like the
Keynesian consumption function above (where y corresponds to Ct, X to Yt and
W to It) the IV estimator is the ratio of the coe¢ cient of the regression of yt on
wt to the coe¢ cient of the regression of xt on wt:
If the model is over identi�ed, the Generalised Instrumental Variable Estimator

(GIVE), which is the same as the Two Stage Least Squares Estimator (2SLS) is
obtained by �rst regressing each of the X on the W ;

X = WB + V

to give the i � k matrix of coe¢ cients bB = (W 0W )�1W 0X, then calculating the
predicted values of X as: bX = W bB = W (W 0W )�1W 0X. Substituting X = bX+ bV
into the original regression we get:

y = ( bX + bV )� + u = bX� + (bV � + u):
Now bX is uncorrelated with u since it is only a function of the W which are
uncorrelated with u, and is uncorrelated with bV by construction. Therefore it
satis�es our exogeneity conditions. The GIVE estimator is

�GIV = ( bX 0 bX)�1 bX 0y

= (X 0W (W 0W )�1W 0X)�1X 0W (W 0W )�1W 0y

= (X 0PwX)
�1X 0Pwy

with Pw = W (W 0W )�1W 0 being a projection matrix. Its variance covariance
matrix is �2(X 0PwX)

�1 and we estimate the residuals using the actual X not
their �tted values:

s2IV = (y �X�GIV )0(y �X�GIV )=(T � k)

This estimator chooses � to make X 0Pwu = 0: It minimises the estimate of u0Pwu;
the IV minimand, rather than u0u as OLS does. Many programs report the IV
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minimand, which will be zero when the model is just identi�ed. Show this by
mutiplying out

(y �X�IV )0W (W 0W )�1W 0(y �X�IV )
for the just identi�ed case where �IV = (W 0X)�1W 0y:

10.4. Example: Endogenous variables

Suppose xit denote potentially endogenous variables, wit exogenous variables and
the structural model is

yt = �0 + �1x1t + �2x2t + �3w1t + ut

with w2t; w3t; w4t as potential instruments. Note that X = [1 x1t x2t w1t]; and
W = [1 w1t w2t w3t w4t] so k = 4; i = 5 and the degree of overidenti�cation is one.
To get the �tted values, you run the two �reduced form�regressions:

x1t = b10 + b11w1t + b12w2t + b13w3t + b14w4t + v1t

x2t = b20 + b21w1t + b22w2t + b23w3t + b24w4t + v2t

to give you estimates of bx1t; bx2t; bv1t; bv2t; use the �tted values in the regression:
yt = �0 + �1bx1t + �2bx2t + �3w1t + et (10.2)

where et = ut + �1bv1t + �2bv2t: The OLS estimates from this regression give the
GIVE estimates of �i and the residuals are estimated as:

eut = yt � (�GIV0 + �GIV1 x1t + �
GIV
2 x2t + �

GIV
3 w1t)

i.e. not using the �tted values.
You do not have to do GIVE/2SLS estimation in two stages in practice, since

it is programmed into most packages. You just choose the option and list the
instruments in addition to the model. Do not forget to include constant and right
hand side exogenous variables among the instruments. However, it is usually a
good idea to look at the F statistic on the reduced form regressions. A rule of
thumb is that this should be greater than about 10. If the instruments are weak,
do not explain xit very well, then the GIVE estimates will be badly biased and
have large variance even in large samples.
If the instruments (or more precisely the over-identifying restrictions which

exclude w2t; w3t; w4t from the structural model) are valid, these GIVE or 2SLS
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residuals should be uncorrelated with the instruments. This can be tested by a
Sargan (Bassman) test which involves regressing the GIVE residuals on all the
instruments: eut = c0 + c1w1t + c2w2t + c3w3t + c4w4t + "t
and testing the hypothesis c1 = c2 = c3 = c4 = 0, this will be distributed �2(i�k);
i.e. with degrees of freedom equal to the number of overidentifying restrictions.
This can also be expressed as the ratio of the IV minimand (see above) to the
GIVE variance. When the model is just identi�ed, the IV minimand is zero, so
the test is not de�ned.
To test whether the xit are in fact exogenous you can use the Wu-Hausman

test. To do this you save the residuals from the reduced form regressions, bv1t; bv2t;
and include them in the original regression, i.e. run by OLS:

yt = �0 + �1x1t + �2x2t + �3w1t + �1bv1t + �2bv2t + ut
then test the null that they are exogenous H0 : �1 = �2 = 0: Rejection of the
null (signi�cant reduced form residuals) indicates that one or both of them are
endogenous and GIVE should be used. This tests whether there is a signi�cant
di¤erence between the OLS and GIVE estimates.

10.5. Example: measurement error

One cause of correlation between errors and regressors is measurement error. Sup-
pose the model is

yt = �x
�
t + "t; (10.3)

where the variables are measured as deviations from their means and the true
value x�t is not observed, but we observe

xt = x
�
t + vt (10.4)

where

E("t) = E(vt) = 0

E("t) = �2"; E(vt) = �
2
v

and "t and vt are independent of each other and x�t : In some cases, e.g. where
x�t was the expected value of xt we may have suitable instruments and can apply
instrumental variables, but suppose we do not.
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Now

yt = �x�t + "t

= �(xt � vt) + "t
= �xt + ("t � �vt)
= bxt + ut

Clearly xt and ut are correlated E(xt; ut) = E((x�t + vt) ("t � �vt) = ���2v; hence
b will be an inconsistent estimator for �: xt is not weakly exogeous for �; because
we need to know information about the marginal distribution of xt; i.e. �2v: We
can observe the variances for yt and xt and their covariance:

Sxx =
1

T

X
x2t ; Syy =

1

T

X
y2t ; Sxy =

1

T

X
xtyt:

The variables are de�ned as deviations from their means. Assuming large samples,
we can match these up with their theoretical values; de�ning the variance of x�t
as �2�

Sxx = �2� + �
2
v

Syy = �2�2� + �
2
"

Sxy = ��2�

The �rst line is got by squaring (10.4), and using the fact that the covariance of
vt and x�t is zero; the second line is got by squaring (10:3) ; the third line is got by
multiplying (10:3) by (10.4). The OLS estimator from a regression of yt on xt is

bb = Sxy
Sxx

=
��2�

�2� + �
2
v

< �:

So unless �2v = 0; the direct least squares estimator is biased downwards. Consider
taking the inverse of the coe¢ cient of the reverse regression of xt on yt which is

bd = Syy
Sxy

=
�2�2� + �

2
"

��2�
> �

so unless �2" = 0, this reverse least squares estimator is biased upwards. This gives
us a bound in large samples bb < � < bd
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This may be useful in seeing the size of the e¤ect of the possible measurement error.
Unfortunately this does not generalise to more than two variables in any simple
way; but with more variables there may be other ways to deal with measurement
error.
Up to now we have considered point identi�cation, a parameter is either iden-

ti�ed or not identi�ed. In this case the parameter is identi�ed as being within a
bound, � is between bb and bd: There are other cases of identi�cation within bounds.
The model is not point identi�ed because we have three pieces of information Sij
and four theoretical parameters. One extra piece of information would identify
it. If we knew that the errors in measurement were the same size as the errors in
equation �2" = �

2
v (or any other known ratio) this would identify it. In the case

where �2" = �
2
v = �

2 then

Sxx = �2� + �
2

Syy = �2�2� + �
2

Sxy = ��2�

From the third equation, �2� = Sxy=�; from the �rst equation

�2 = Sxx � �2� = Sxx � Sxy=�

substituting these in the second equation gives

Syy = �
2 (Sxy=�) + Sxx � Sxy=�:

Rearranging this shows � is a solution to the quadratic equation

�2Sxy + �(Sxx � Syy)� Sxy = 0:

Which by the usual formula

�b�
p
b2 � 4ac
2a

gives

�(Sxx � Syy)�
q
(Sxx � Syy) + 4S2xy

2Sxy
:
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10.5.1. Principal Components

If you have a number of indicators of an unobserved variable or factor, then
Principal Components, PC, can provide an estimate. These are used in factor
augmented VARs and other applications. The PC of a T�N data matrixX (which
is usually standardised by subtracting the mean of the variable and dividing by
the standard deviation) are the linear combination which explains as much as
possible of the variance of all the X: The �rst principal component is z1 = Xa1
where the variance of z i.e. z01z1 =

P
z21t = a

0
1X

0Xa1 is maximised. Notice that if
the data are standardised, X0X is the correlation matrix of the data, otherwise it
is the covariance matrix.This z01z1 can be made as large as you like depending on
the units of a1 so we need to choose a normalisation that determines scale, it is
usual to use a01a1 = 1: Set this up as a Lagrangian,

$ = a01X
0Xa1 � �1(a01a1 � 1)

@$

@a1
= X0Xa1 � �1a1 = 0:

Thus �1 is the largest eigenvalue and a1 the corresponding eigenvector. If the data
are standardised �1 tells you the proportion of the variation in X explained by the
�rst PC. One can get the other PCs in a similar way and they will be orthogonal
(uncorrelated). This gives you N new variables which are linear combinations
of the X: One uses a subset of these corresponding to the r largest eigenvalues.
There are various ways to choose r; one is to use any PCs where the eigenvalues
from standardised data are greater than one. In EViews to get PCs de�ne a group,
the variables in X; open the group; choose View and one of the options will be
to calculate the PCs for the group. These are known as static PCs or factors,
dynamic factors take the PCs or the long-run covariance matrix (spectral density
matrix) of X:

122


