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Session 3. The Normal curve

Summary

The Normal curve is so called because it is how many social and scientific data appear distributed. This session looks at the properties of a Normal curve, ways to detect Normality, and examples of skewed data.

In this session you will

· Learn about the Normal curve and how to make visual checks for Normality in R.

· Learn how to calculate the area under a Normal curve.

· Learn how to transform data and to check them for skew and kurtosis.

Looking at a Normal curve

The Normal curve has a bell-shaped appearance. To show this we will load a set of almost Normally distributed data and plot them on a histogram over which a true Normal curve will be superimposed.

library(SGES)

# Only necessary if you've closed R since the last session

data(normal.data)

head(normal.data)

hist.normal(normal.data)

# This is a function in the SGES library only, i.e. it's
# not usually available in R

Quantile plot

The histogram is not an especially good way to see if data are Normally distributed because it is dependent upon the number of groups (bins/columns) there are in the plot. An alternative is to use a quantile plot. It's derivation is explained in Section 3.11 of Statistics for Geography and Environmental Science (SfGES, pp. 76 – 79, although using a slightly different method to R the principle is the same). Suffice to say, if the data are Normally distributed they will be plotted along the straight line evident in the following plot

qqnorm(normal.data)

qqline(normal.data)

The reason they aren’t all on the line here is because the data aren't actually quite Normal. In particular, they only range from -2.71 to 2.71, whereas a truly Normal distribution ranges from negative to positive infinity.

Checking data for Normality

Because the Norma curve is symmetrical around its centre, the mean and the median will be the same for Normally distributed data. In addition, a box plot will be symmetrical around the median (the thick vertical line at the centre of the plot). And, as we have seen, the data should lie along the straight line in a quantile plot.

summary(normal.data)

# Are the median and the mean approximately equal? Check!

boxplot(normal.data, horizontal = T)

# Are the box and whiskers symmetrical around the median? Check!

qqnorm(normal.data)

qqline(normal.data)

# Are the majority of the data on the straight line? Check!

Here the answer is yes to all the checks of Normality, except perhaps the last.

In contrast, a second dataset exhibits positive skew. This gives the average weekly income, in Pounds Sterling, and for the year 2004-2005, per census zone in the UK (source: Office of National Statistics, 2009). The data are skewed because there are a few places with very high incomes and this raises the mean above the median. A negative skew would be evident if the mean were lower than the median. Skewed data are discussed in Section 3.9 of SfGES, pp. 70 – 75.

data(income.data)

head(income.data)

attach(income.data)

summary(GBP)

hist.normal(GBP)

boxplot(GBP)

# Note the tail of a few high numbers

qqnorm(GBP)

qqline(GBP)

detach(income.data)

The following code produces Figure 3.1, allowing you to compare the distributions of the data side-by-side.

par(mfrow = c(3, 2))

# Creates a 3 by 2 graphics window

hist.normal(normal.data)

attach(income.data)

hist.normal(GBP, xlab="£")

boxplot1 = boxplot(normal.data, horizontal=T, xlab="x", xaxt="n")

axis(1, at = boxplot1$stats)

rug(normal.data)

boxplot1 = boxplot(GBP, horizontal=T, xlab="£", xaxt="n")

axis(1, at = boxplot1$stats)

rug(GBP)

qqnorm(normal.data)

qqline(normal.data)

qqnorm(GBP)

qqline(GBP)

detach(income.data)
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Figure 3.1. Using visual techniques to compare the distributions of the approximately Normal data (left) and the positively skewed data (right).

Moments of a distribution

The mean and standard deviation are the first and second moments of a distribution, measuring its centre and spread. The third and fourth measure how skewed (non-symmetrical) it is, and how flat or peaked it is.

The function skew() in the SGES library gives a measure of skew. If the data are symmetrical around the mean then the skew value is zero. Positive skew gives a vale above zero. Negative skew gives a value less than zero. Comparing the (approximately) Normal data with the skewed the income data:

skew(normal.data)

round(skew(normal.data), 3)

skew(income.data$GBP)

round(skew(income.data$GBP), 3)

# The income data are the more (positively) skewed

The function kurtosis() measures how flat or peaked the data are. Here, the greater the value above zero, the more peaked the distribution is, and the lesser the value below zero, the more flat it is.

kurtosis(normal.data)

kurtosis(income.data$GBP)

# The 'Normal' data are, in fact, slightly flat;
# the income data slightly are peaked. This is evident
# in the histograms in Figure 3.1.

Calculating the area under a Normal curve

A  characteristic of any Normal curve is that 95% of the area underneath it is within 1.96 standard deviations either side of the mean, and 99% of the area is within 2.58 standard deviations (see Figure 3.6 in SfGES, p. 58).

This can be confirmed using the Normal data. First, the data need to be converted into z values: units of standard deviation from the mean.

z.values = (normal.data - mean(normal.data)) / sd(normal.data)

Then the proportion of them with values between -1.96 and +1.96 standard deviations of the mean can be found,

N = length(z.values)

# The total number of observations in the data set

n = length(which(z.values > -1.96 & z.values < 1.96))

# The amount with z values between -1.96 and +1.96

n / N

# The proportion of the data between -1.96 and +1.96
# standard deviations from the mean

n = length(which(z.values > -2.58 & z.values < 2.58))

n / N

# The proportion of the data between -2.58 and +2.58
# standard deviations from the mean

In both cases the proportions are only approximately correct because the data are only approximately Normal. The proportions can be calculated with precision using

pnorm(1.96) – pnorm(-1.96)

This calculates the proportion of the area under a (true) Normal curve from negative infinitely to z = 1.96, minus the proportion from negative infinity to z = -1.96. What is left is the area -1.96 < z < +1.96, i.e. the area within 1.96 standard deviations either side of the mean.

Similarly,

pnorm(2.58) – pnorm(-2.58)

calculates the area within 2.58 standard deviations of the mean.

Worked examples

The following examples are from Section 3.7 of SfGES, pp. 62 – 69.

Load the expenses data that record the amounts claimed by Members of Parliament (MPs) in the year 2006-7 (before the expenses scandal of 2009). Inspecting the data reveals that the data have a slight negative skew. Note, for example, that the mean is less than the median.

data(expenses)

summary(expenses)

attach(expenses)

hist.normal(GBP)

boxplot(GBP, horizontal=T)

qqnorm(GBP)

qqline(GBP)

skew(GBP)

Although it might be possible to transform the data to correct the negative skew (see below), here we proceed by omitting the three most frugal MPs from the data and treating the remainder as if they were Normally distributed.

expenses2 = GBP[GBP > 90000]

detach(expenses)

hist.normal(expenses2)

boxplot(expenses2)

qqnorm(expenses2)

qqline(expenses2)

skew(expenses2)

# The data are skewed but less so than before

Example 1

Assuming the data are Normally distributed, what is the probability of selecting an MP at random from the data who has claimed between £107 526 and £164 836 in expenses?

First the numbers at each end of the range are converted into z values.

z.low = (107526 - mean(expenses2)) / sd(expenses2)

z.high = (164836 - mean(expenses2)) / sd(expenses2)

Then the area under a Normal curve between these two z values can be determined

pnorm(z.high) - pnorm(z.low)

The answer is P = 0.95

Example 2

Assuming the data are Normally distributed, what is the probability of selecting an MP at random from the data who has claimed between £98 461 and £173 901 in expenses?

z.low = (98461 - mean(expenses2)) / sd(expenses2)

z.high = (173901 - mean(expenses2)) / sd(expenses2)

pnorm(z.high) – pnorm(z.low)

The answer is P = 0.99

Example 3

Assuming the data are Normally distributed, what is the probability of selecting an MP at random from the data who has claimed between £150 000 and £175 000 in expenses?

z.low = (150000 - mean(expenses2)) / sd(expenses2)

z.high = (175000 - mean(expenses2)) / sd(expenses2)

pnorm(z.high) - pnorm(z.low)

The answer is P = 0.17

Transforming data

It can be possible to apply a mathematical function to a set of data to correct for skew and make their distribution Normal. For example, for the income data (which is positively skewed) taking the square root or the common logarithm helps:

incomes2 = sqrt(income.data$GBP)

hist.normal(incomes2)

boxplot(incomes2, horizontal = T)

# The data transformed using the square root

incomes3 = log10(income.data$GBP)

hist.normal(incomes3)

boxplot(incomes3, horizontal = T)

# The data transformed using the common log (log10)

For the MPs' expenses data, that are negatively skewed, taking the square of the data assists:

expenses3 = expenses$GBP^2

hist.normal(expenses3)

boxplot(expenses3, horizontal = T)

# The data transformed by taking the square

For a list of some other common transformations see SfGES, Table 3.7, p. 73.

'Footnote': writing a function in R

The skew and kurtosis functions are available in the SGES library. It is straightforward to write your own function. For example, to create a function that calculates the area of a circle,

circle.area = function(r) {


return(pi * r^2)

}

We can then use the function to calculate the area of a circle with radius, r = 5,

circle.area(5)

Alternatively, to find the shortest distance between two points we might write the following function:

min.d = function(x1, y1, x2, y2) {


min.d = sqrt((x1 - x2)^2 + (y1 - y2)^2)


return(min.d)

}

To then find the distance between the points (1, 1) and (4, 5) use

min.d(1, 1, 4, 5)

which gives the answer 5.

The functions written to calculate skew and kurtosis are

skew = function(x) {



x = x[complete.cases(x)]


numerator = sum((x - mean(x))^3)


denom = (length(x) - 1) * sd(x)^3


return(numerator/denom)



# See Equation 3.25 in SfGES

}

kurtosis = function(x) {



x = x[complete.cases(x)]


numerator = sum((x - mean(x))^4)


denom = (length(x) - 1) * sd(x)^4


return(numerator/denom - 3)



# See Equation 3.27 in SfGES

}

Tidying-up

You can, if you wish, now close R without saving the workspace. However, if you are continuing on to the next session now is a good time to tidy the workspace.

In this instance, you can delete all the objects in the workspace,

rm(list=ls())

Directed reading

Read Chapter 3 of the textbook Statistics for Geography and Environmental Science to:

· Read an example of why Normal distributions often arise.

· Learn more about probability.

· Review the material presented in this session.
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