Hypothesis Testing (2)

Lecture 8

Hypothesis Testing (2)

- So far we have looked at hypothesis testing about a single population parameter
 - $H_0: \mu = 5000$
- Now we look at testing hypotheses about differences between two population parameters
 - E.g. are women paid less than men?

Formal Layout of a Problem

- 1. Specify the null and alternative hypothesis
- 2. Choose significance level, e.g. 5%
- 3. Look up critical value from z or t-tables
- 4. Calculate the test statistic
- 5. Decision: reject or do not reject H₀

Testing the Difference of Two Means

 To test whether two samples are drawn from populations with the same mean

$$H_0$$
: $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 \neq \mu_2$ or H_0 : $\mu_1 - \mu_2 \neq 0$

The test statistic is

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Example: Car Company has Two Factories is Output the Same?

Average daily output for 30 days	420	408
Standard dev of daily output	25	20

- H_0 : $\mu_1 = \mu_2$ or $\mu_1 \mu_2 = 0$
- $H_1: \mu_1 \mu_2 \neq 0$
- Significance level of 1% implies $z^*_{0.005}$ =2.57

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(420 - 408) - (0)}{\sqrt{\frac{25^2}{30} + \frac{20^2}{30}}} = 2.05$$

- z<z* so it falls in the non-rejection region and therefore we do not reject the null hypothesis.
- There does not seem to be enough evidence to reject the claim that output is the same in each factory

Testing the Difference of Two Proportions

To test whether two sample proportions are equal

$$H_0$$
: $\pi_1 = \pi_2$ or H_0 : $\pi_1 - \pi_2 = 0$
 H_1 : $\pi_1 \neq \pi_2$ or H_1 : $\pi_1 - \pi_2 \neq 0$

The test statistic is

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}(1 - \hat{\pi})}{n_1} + \frac{\hat{\pi}(1 - \hat{\pi})}{n_2}}}$$

$$\hat{\pi} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

Example: Customer Satisfaction

Are Customers Equally Satisfied with Different Tours?

proportion who say they are satisfied	45/75	48/90

- $H_0: \pi_1 \pi_2 = 0$
- $H_1: \pi_1 \pi_2 \neq 0$
- Significance level of 5%, $z^*_{0.025}$ =1.96

$$\hat{\pi} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{75 * 0.6 + 90 * 0.533}{75 + 90} = 0.564$$

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}(1 - \hat{\pi})}{n_1} + \frac{\hat{\pi}(1 - \hat{\pi})}{n_2}}}$$

$$= \frac{(0.6 - 0.533) - (0)}{\sqrt{\frac{0.564(1 - 0.564)}{75} + \frac{0.564(1 - 0.564)}{90}}} = 0.86$$

z<z* so we do not reject the null hypothesis

Small Samples: Testing the Difference of Two Means

The test statistic is

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S^2}{n_1} + \frac{S^2}{n_2}}} \sim t(n_1 + n_2 - 2)$$

• where S^2 is the pooled variance

$$S^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}$$

Independent and Dependent Samples

- So far assumed our samples are drawn independently
- Often we have dependent samples (e.g. before and after tests, or scores on macro and micro exams)
- We use a different approach to use the info. that the data comes from the same observation

Example: Paired Samples

Worker	1	2	3	4	5	6	7	8	9	10
Before	21	24	23	25	28	17	24	22	24	27
After	23	27	24	28	29	21	24	25	26	28
Improve ment	2	3	1	3	1	4	0	3	2	1

$$\overline{x}_B = 23.5, s_B = 3.10, n = 10$$

$$\overline{x}_A = 25.5, s_A = 2.55, n = 10$$

$$\overline{x}_{Improvement} = 2.00, s_{Improvement} = 1.247, n = 10$$

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

$$H_0: \mu_{\text{improvement}} = 0$$
 $H_A: \mu_{\text{improvement}} > 0$
 $t_{0.05,9}^* = 1.833$
 $t = \frac{2.0 - 0}{\sqrt{\frac{1.247^2}{10}}} = 5.07$

 t>t* so we reject the null hypothesis and conclude that training has improved worker productivity

Summary

- The principles are the same for all tests: calculate the test statistic and see if it falls into the rejection region
- The formula for the test statistic depends upon the problem (mean, proportion, etc)
- The rejection region varies, depending upon whether it is a one or two tailed test
- For large samples we can always use a z test
- If n is small we can still use z test if the population variance is known
- Otherwise use a t (and pool variances)